scholarly journals Parallel Genome-Wide Expression Profiling of Host and Pathogen During Soybean Cyst Nematode Infection of Soybean

2007 ◽  
Vol 20 (3) ◽  
pp. 293-305 ◽  
Author(s):  
Nagabhushana Ithal ◽  
Justin Recknor ◽  
Dan Nettleton ◽  
Leonard Hearne ◽  
Tom Maier ◽  
...  

Global analysis of gene expression changes in soybean (Glycine max) and Heterodera glycines (soybean cyst nematode [SCN]) during the course of infection in a compatible interaction was performed using the Affymetrix GeneChip soybean genome array. Among 35,611 soybean transcripts monitored, we identified 429 genes that showed statistically significant differential expression between uninfected and nematode-infected root tissues. These included genes encoding enzymes involved in primary metabolism; biosynthesis of phenolic compounds, lignin, and flavonoids; genes related to stress and defense responses; cell wall modification; cellular signaling; and transcriptional regulation. Among 7,431 SCN transcripts monitored, 1,850 genes showed statistically significant differential expression across different stages of nematode parasitism and development. Differentially expressed SCN genes were grouped into nine different clusters based on their expression profiles during parasitism of soybean roots. The patterns of gene expression we observed in SCN suggest coordinated regulation of genes involved in parasitism. Quantitative real-time reverse-transcription polymerase chain reaction confirmed the results of our microarray analysis. The simultaneous genome-wide analysis of gene expression changes in the host and pathogen during a compatible interaction provides new insights into soybean responses to nematode infection and the first profile of transcript abundance changes occurring in the nematode as it infects and establishes a permanent feeding site within a host plant root.

2017 ◽  
Vol 117 (04) ◽  
pp. 758-768 ◽  
Author(s):  
Sebastian Armasu ◽  
Bryan McCauley ◽  
Iftikhar Kullo ◽  
Hugues Sicotte ◽  
Jyotishman Pathak ◽  
...  

SummaryTo identify novel single nucleotide polymorphisms (SNPs) associated with venous thromboembolism (VTE) in African-Americans (AAs), we performed a genome-wide association study (GWAS) of VTE in AAs using the Electronic Medical Records and Genomics (eMERGE) Network, comprised of seven sites each with DNA biobanks (total ~39,200 unique DNA samples) with genome-wide SNP data (imputed to 1000 Genomes Project cosmopolitan reference panel) and linked to electronic health records (EHRs). Using a validated EHR-driven phenotype extraction algorithm, we identified VTE cases and controls and tested for an association between each SNP and VTE using unconditional logistic regression, adjusted for age, sex, stroke, site-platform combination and sickle cell risk genotype. Among 393 AA VTE cases and 4,941 AA controls, three intragenic SNPs reached genome-wide significance: LEMD3 rs138916004 (OR=3.2; p=1.3E-08), LY86 rs3804476 (OR=1.8; p=2E-08) and LOC100130298 rs142143628 (OR=4.5; p=4.4E-08); all three SNPs validated using internal cross-validation, parametric bootstrap and meta-analysis methods. LEMD3 rs138916004 and LOC100130298 rs142143628 are only present in Africans (1000G data). LEMD3 showed a significant differential expression in both NCBI Gene Expression Omnibus (GEO) and the Mayo Clinic gene expression data, LOC100130298 showed a significant differential expression only in the GEO expression data, and LY86 showed a significant differential expression only in the Mayo expression data. LEMD3 encodes for an antagonist of TGF-β-induced cell proliferation arrest. LY86 encodes for MD-1 which down-regulates the pro-inflammatory response to lipopolysaccharide; LY86 variation was previously associated with VTE in white women; LOC100130298 is a non-coding RNA gene with unknown regulatory activity in gene expression and epigenetics.Supplementary Material to this article is available online at www.thrombosis-online.com.


1998 ◽  
Vol 11 (12) ◽  
pp. 1258-1263 ◽  
Author(s):  
Dieter Hermsmeier ◽  
Mitra Mazarei ◽  
Thomas J. Baum

The marked cellular changes during feeding site formation of the soybean cyst nematode (Heterodera glycines) indicate major changes in soybean gene expression. We used differential display of mRNA to detect host gene expression changes during the early compatible interaction between soybean and H. glycines. Fifteen cDNA clones corresponding to mRNAs with different abundances in H. glycines-infected versus uninfected roots were identified. Differential display results indicated that abundances of five mRNAs increased in infected roots, whereas abundances of 10 mRNAs decreased. Transcripts for nine of these 15 cDNAs could be detected on RNA blots, and their hybridization signals confirmed the differential display results for eight of these nine cDNAs. Sequence analyses identified five cDNAs with decreased mRNA levels in infected roots as corresponding to two putative aldolase genes, a transcription-factor TFIIA homologue, the soybean small GTP-binding protein gene sra1, and the soybean auxin down-regulated gene ADR12. RNA blot analyses of other auxin down-regulated genes revealed a decrease in their mRNA abundances in H. glycines-infected roots as well.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0159338 ◽  
Author(s):  
Shalu Jain ◽  
Kishore Chittem ◽  
Robert Brueggeman ◽  
Juan M. Osorno ◽  
Jonathan Richards ◽  
...  

2018 ◽  
Vol 115 (21) ◽  
pp. 5492-5497 ◽  
Author(s):  
Iskander Said ◽  
Ashley Byrne ◽  
Victoria Serrano ◽  
Charis Cardeno ◽  
Christopher Vollmers ◽  
...  

Chromosomal inversions are widely thought to be favored by natural selection because they suppress recombination between alleles that have higher fitness on the same genetic background or in similar environments. Nonetheless, few selected alleles have been characterized at the molecular level. Gene expression profiling provides a powerful way to identify functionally important variation associated with inversions and suggests candidate phenotypes. However, altered genome structure itself might also impact gene expression by influencing expression profiles of the genes proximal to inversion breakpoint regions or by modifying expression patterns genome-wide due to rearranging large regulatory domains. In natural inversions, genetic differentiation and genome structure are inextricably linked. Here, we characterize differential expression patterns associated with two chromosomal inversions found in natural Drosophila melanogaster populations. To isolate the impacts of genome structure, we engineered synthetic chromosomal inversions on controlled genetic backgrounds with breakpoints that closely match each natural inversion. We find that synthetic inversions have negligible effects on gene expression. Nonetheless, natural inversions have broad-reaching regulatory impacts in cis and trans. Furthermore, we find that differentially expressed genes associated with both natural inversions are enriched for loci associated with immune response to bacterial pathogens. Our results support the idea that inversions in D. melanogaster experience natural selection to maintain associations between functionally related alleles to produce complex phenotypic outcomes.


GigaScience ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Jae-Yoon Kim ◽  
Seongmun Jeong ◽  
Kyoung Hyoun Kim ◽  
Won-Jun Lim ◽  
Ho-Yeon Lee ◽  
...  

Abstract Background Domestication and improvement processes, accompanied by selections and adaptations, have generated genome-wide divergence and stratification in soybean populations. Simultaneously, soybean populations, which comprise diverse subpopulations, have developed their own adaptive characteristics enhancing fitness, resistance, agronomic traits, and morphological features. The genetic traits underlying these characteristics play a fundamental role in improving other soybean populations. Results This study focused on identifying the selection signatures and adaptive characteristics in soybean populations. A core set of 245 accessions (112 wild-type, 79 landrace, and 54 improvement soybeans) selected from 4,234 soybean accessions was re-sequenced. Their genomic architectures were examined according to the domestication and improvement, and accessions were then classified into 3 wild-type, 2 landrace, and 2 improvement subgroups based on various population analyses. Selection and gene set enrichment analyses revealed that the landrace subgroups have selection signals for soybean-cyst nematode HG type 0 and seed development with germination, and that the improvement subgroups have selection signals for plant development with viability and seed development with embryo development, respectively. The adaptive characteristic for soybean-cyst nematode was partially underpinned by multiple resistance accessions, and the characteristics related to seed development were supported by our phenotypic findings for seed weights. Furthermore, their adaptive characteristics were also confirmed as genome-based evidence, and unique genomic regions that exhibit distinct selection and selective sweep patterns were revealed for 13 candidate genes. Conclusions Although our findings require further biological validation, they provide valuable information about soybean breeding strategies and present new options for breeders seeking donor lines to improve soybean populations.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Waltram Second Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Liana Nice ◽  
Yong Bao ◽  
...  

Abstract Background Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has been one of the most devastating pathogens affecting soybean production. In the United States alone, SCN damage accounted for more than $1 billion loss annually. With a narrow genetic background of the currently available SCN-resistant commercial cultivars, high risk of resistance breakdown can occur. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify QTL, SNP markers, and candidate genes associated with soybean leaf chlorophyll content tolerance to SCN infection, and to carry out a genomic selection (GS) study for the chlorophyll content tolerance. Results A total of 172 soybean genotypes were evaluated for the effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean leaf chlorophyll. The soybean lines were genotyped using a total of 4089 filtered and high-quality SNPs. Results showed that (1) a large variation in SCN tolerance based on leaf chlorophyll content indices (CCI); (2) a total of 22, 14, and 16 SNPs associated with CCI of non-SCN-infected plants, SCN-infected plants, and reduction of CCI SCN, respectively; (3) a new locus of chlorophyll content tolerance to SCN mapped on chromosome 3; (4) candidate genes encoding for Leucine-rich repeat protein, plant hormone signaling molecules, and biomolecule transporters; and (5) an average GS accuracy ranging from 0.31 to 0.46 with all SNPs and varying from 0.55 to 0.76 when GWAS-derived SNP markers were used across five models. This study demonstrated the potential of using genome-wide selection to breed chlorophyll-content-tolerant soybean for managing SCN. Conclusions In this study, soybean accessions with higher CCI under SCN infestation, and molecular markers associated with chlorophyll content related to SCN were identified. In addition, a total of 15 candidate genes associated with chlorophyll content tolerance to SCN in soybean were also identified. These candidate genes will lead to a better understanding of the molecular mechanisms that control chlorophyll content tolerance to SCN in soybean. Genomic selection analysis of chlorophyll content tolerance to SCN showed that using significant SNPs obtained from GWAS could provide better GS accuracy.


Sign in / Sign up

Export Citation Format

Share Document