scholarly journals First Report of Resistance of Wheat Line Avocet ‘S’ to Stripe Rust Caused by Puccinia striiformis f. sp. tritici (Pst) in Syria

Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 996-996 ◽  
Author(s):  
K. Nazari ◽  
R. El Amil

Seedling assays and field-based assessments are common approaches used in monitoring pathogenic variability of Puccinia striiformis f. sp. tritici (Pst). Due to the many candidate genes for resistance, and the occasional presence of uncharacterized or unexpected resistance genes, interpretation of seedling and adult plant responses of stripe rust differential genotypes can be confounded. To facilitate data interpretation and overcome growth habit differences, a set of near-isogenic lines (NILs) based on a susceptible selection of the widely susceptible Australian spring wheat cultivar Avocet was developed in Plant Breeding Institute, University of Sydney. During the 2011 rust survey of major wheat growing areas in Syria, we collected and recovered two isolates, one from bread wheat and one from durum, using susceptible cultivar Morocco. Fresh urediniospores collected from inoculated seedlings of cultivar Morocco under greenhouse conditions were used to infect a differential set of seedlings comprising the Avocet S NIL series with Yr1, 5, 6, 7, 8, 9, 10, 15, 17, 27, 32, A, SP and a supplementary set of Kalyansona (Yr2), Fielder (Yr6, Yr20), Thatcher (Yr7), Federation*4/Kavkaz (Yr9), TP1295 and TP981 (Yr25), Ciano 79 and Opata 85 (Yr27), Lemhi (Yr21), Anza (YrA), Tres/6*Avocet ‘S’, Cook, Avocet S, and Federation following standard protocol (1). Seedling infection types (IT) were recorded 15 to 17 days post-inoculation using a 0, ;(fleck), 1 to 4 scale, with ITs 3 and 4 considered to be high. According to European race nomenclature (1), these isolates would be classified as 6 E0 and assumes that differential cultivars Lee (Yr7) and Heines Kolben should be susceptible. A low infection of ;N (necrotic areas without sporulation) was observed on Avocet S and Avocet NILs Yr1, 5, 8, 10, 15, 17, 32, A, and SP. NILs Yr6, 7, and 9 responded with high infection types. Among the supplementary set, IT ;N was recorded for Anza, Cook, Tres/6*Avocet S, Opata 85, and Ciano 79 whereas IT 3+4 occurred on Kalyansona, Fielder, Thatcher, Federation*4/Kavkaz, TP1295 and TP981, and Lemhi. Federation and Morocco were susceptible to both isolates. Based on these data we concluded that 1) Avocet S carries at least one effective gene for resistance to the two isolates (temporarily designated as YrAvS and perhaps the same as the gene(s) in Anza and Cook); and 2) since Avocet S was resistant, it was expected that all the NILs should also be resistant unless one of the selected resistance genes was closely linked in repulsion with the gene in Avocet S. Since such a situation is possible for only one line, other explanations are that the recurrent parent, Avocet S, was not genetically homogeneous, or more likely, that the genetic background of Avocet S was not fully regenerated during the six backcross and subsequent selfing generations. This work illustrates the problems that can arise when sets of differential genotypes that perform in a satisfactory way in a particular (limited) geographical area are applied globally. Pst races carrying avirulence genes that are not present in the original area where a differential cultivar is characterized for its susceptibility may be present in other areas. Consequently, a differential cultivar which was susceptible in the original area may unexpectedly exhibit resistance in a new region. Therefore, host lines considered to be “universally susceptible” in one region may not be susceptible globally. The resistance of Avocet S is yet to be characterized. Reference: (1) R. Johnson et al. Trans. Br. Mycol. Soc. 58:475, 1972.

1994 ◽  
Vol 45 (7) ◽  
pp. 1379 ◽  
Author(s):  
GJ Ash ◽  
RG Rees

Temperature sensitive resistance to stripe rust in selected Australian wheat cultivars was found to be most strongly expressed at a constant post-inoculation temperature of l9�C and at high light intensities. At 25�C the infection type on the susceptible host was reduced, indicating incompatability, while at the lower temperature of 13�C all cultivars were susceptible to the rust. At low light intensities there was a movement towards low infection types in cultivars possessing this resistance even at low temperatures. This made it essential to use high light intensities to differentiate this resistance to stripe rust. The host-pathogen interaction leading to the low infection types became irreversible after 6 to 7 days' exposure to the higher temperatures. As well as affecting disease progress towards the end of the growing season in the warmer areas of the wheat belt, this resistance could have a marked effect on the ability of Puccinia striiformis fsp. tritici to oversummer in the Australian wheat growing areas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 966-975 ◽  
Author(s):  
Anmin Wan ◽  
Xianming Chen ◽  
Jonathan Yuen

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases on wheat in the United States. In 2011, severe wheat stripe rust caused extensive application of fungicides in the western United States, and the disease was more widespread and caused more yield loss in the eastern United States in 2012. In this study, we characterized virulences and identified races of P. striiformis f. sp. tritici by testing the stripe rust samples collected throughout the United States in 2011 and 2012 on a set of 18 Yr single-gene differentials. In 2011, 35 races were identified from 349 viable samples collected from 19 states of the United States and Ontario province of Canada, with PSTv-11 (35.5%), PSTv-37 (12.6%), PSTv-14 (11.8%), PSTv-4 (5.4%), and PSTv-34 (3.4%) as the top five predominant races. In 2012, 23 races were identified from 341 viable samples collected from 24 states of the United States and Ontario of Canada, with PSTv-37 (47.5%), PSTv-11 (11.7%), PSTv-14 (10.0%), PSTv-52 (9.4%), and PSTv-48 (4.4%) as the top five predominant races. Nationally, PSTv-37, PSTv-52, and PSTv-34 were most widely distributed, while PSTv-11, PSTv-14, PSTv-4, and PSTv-48 were mostly detected in the western United States. High frequencies (>80%) were detected for virulences to Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr44, and YrExp2; moderate frequencies (20 to 80%) for virulences to Yr1, Yr43, YrTr1, and YrTye; low frequencies (<10%) for virulences to Yr10, Yr24, Yr32, and YrSP; and virulences to Yr5 and Yr15 were not detected, indicating that these two genes are still effective against the P. striiformis f. sp. tritici population in the United States. Both positive and negative associations were identified between some of the virulences. In total, 55 races identified from 2010 to 2012 in the United States were clustered into two major virulence groups, and dynamics of predominant races and virulence frequencies for the 3 years were presented and discussed. This information is useful for making decisions when screening wheat germplasm for developing stripe-rust-resistant wheat cultivars and managing the disease by growing cultivars with adequate and durable resistance. The severe epidemics and the occurrence of the large number of races in the 3 years indicate that efforts should be made to use diverse resistance genes, especially to combine effective all-stage resistance genes with genes for high-temperature adult-plant resistance.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 891-897 ◽  
Author(s):  
B. Bai ◽  
J. Y. Du ◽  
Q. L. Lu ◽  
C. Y. He ◽  
L. J. Zhang ◽  
...  

Stripe rust is a major fungal disease of wheat. It frequently becomes epidemic in southeastern Gansu province, a stripe rust hot spot in China. Evaluations of wheat germplasm response are crucial for developing cultivars to control the disease. In total, 57 wheat cultivars and lines from Europe and other countries, comprising 36 cultivars with documented stripe rust resistance genes and 21 with unknown genes, were tested annually with multiple races of Puccinia striiformis f. sp. tritici in the field at Tianshui in Gansu province from 1993 to 2013. Seven wheat lines were highly resistant, with infection type (IT) 0 during the entire period; 16 were moderately resistant (IT 0;-2); and 26 were moderately susceptible (IT 0;-4), with low maximum disease severity compared with the susceptible control Huixianhong. ‘Strampelli’ and ‘Libellula’, with three and five quantitative trait loci, respectively, for stripe rust resistance have displayed durable resistance in this region for four decades. Ten cultivars, including ‘Lantian 15’, ‘Lantian 26’, and ‘Lantian 31’, with stripe rust resistance derived from European lines, were developed in our breeding program and have made a significant impact on controlling stripe rust in southeastern Gansu. Breeding resistant cultivars with multiple adult-plant resistance genes seems to be a promising strategy in wheat breeding for managing stripe rust in this region and other hot spots.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1763-1770
Author(s):  
Liang Huang ◽  
Xing Zhi Xiao ◽  
Bo Liu ◽  
Li Gao ◽  
Guo Shu Gong ◽  
...  

Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious fungal disease worldwide, especially in the Huang-Huai-Hai region, a main wheat production area in China. Gene postulation, molecular testing, and pedigree analysis were conducted to determine the presence of stripe rust resistance genes to 15 Pst races in 66 selected commercial wheat cultivars released from 2000 to 2016. In addition, races CYR32, CYR33, and CYR34 were used to evaluate resistance to Pst at the adult-plant stage of wheat in the field. Four Yr genes (Yr9, Yr10, Yr26, and Yr32) were postulated in 24 wheat cultivars either singly or in combination. Thirty-six cultivars might contain unknown Yr genes, whereas no identified Yr gene was postulated in six cultivars. Yr9 was detected at a frequency of 28.8%, and no cultivars carried Yr5, Yr15, or Yr18. Ten cultivars (15.2%) exhibited adult-plant resistance in the field tests with three predominant races. Three cultivars (Langyan 43, Xinong 889, and Yunfeng 139) had all-stage resistance. These results are useful to growers selecting cultivars and to breeders aiming to use more resistance genes to develop new cultivars with effective resistance in order to reduce stripe rust damage.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mengjie Jia ◽  
Lijun Yang ◽  
Wei Zhang ◽  
Garry Rosewarne ◽  
Junhui Li ◽  
...  

Abstract Background Stripe rust (yellow rust) is a significant disease for bread wheat (Triticum aestivum L.) worldwide. A genome-wide association study was conducted on 240 Chinese wheat cultivars and elite lines genotyped with the wheat 90 K single nucleotide polymorphism (SNP) arrays to decipher the genetic architecture of stripe rust resistance in Chinese germplasm. Results Stripe rust resistance was evaluated at the adult plant stage in Pixian and Xindu in Sichuan province in the 2015–2016 cropping season, and in Wuhan in Hubei province in the 2013–2014, 2016–2017 and 2018–2019 cropping seasons. Twelve stable loci for stripe rust resistance were identified by GWAS using TASSEL and GAPIT software. These loci were distributed on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4B (3), 4D, 6D, and 7B and explained 3.6 to 10.3% of the phenotypic variation. Six of the loci corresponded with previously reported genes/QTLs, including Sr2/Yr30/Lr27, while the other six (QYr.hbaas-1BS, QYr.hbaas-2BL, QYr.hbaas-3AL, QYr.hbaas-4BL.3, QYr.hbaas-4DL, and QYr.hbaas-6DS) are probably novel. The results suggest high genetic diversity for stripe rust resistance in this population. The resistance alleles of QYr.hbaas-2AS, QYr.hbaas-3BS, QYr.hbaas-4DL, and QYr.hbaas-7BL were rare in the present panel, indicating their potential use in breeding for stripe rust resistance in China. Eleven penta-primer amplification refractory mutation system (PARMS) markers were developed from SNPs significantly associated with seven mapped QTLs. Twenty-seven genes were predicted for mapped QTLs. Six of them were considered as candidates for their high relative expression levels post-inoculation. Conclusion The resistant germplasm, mapped QTLs, and PARMS markers developed in this study are resources for enhancing stripe rust resistance in wheat breeding.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Bettgenhaeuser ◽  
Inmaculada Hernández-Pinzón ◽  
Andrew M. Dawson ◽  
Matthew Gardiner ◽  
Phon Green ◽  
...  

AbstractCrop losses caused by plant pathogens are a primary threat to stable food production. Stripe rust (Puccinia striiformis) is a fungal pathogen of cereal crops that causes significant, persistent yield loss. Stripe rust exhibits host species specificity, with lineages that have adapted to infect wheat and barley. While wheat stripe rust and barley stripe rust are commonly restricted to their corresponding hosts, the genes underlying this host specificity remain unknown. Here, we show that three resistance genes, Rps6, Rps7, and Rps8, contribute to immunity in barley to wheat stripe rust. Rps7 cosegregates with barley powdery mildew resistance at the Mla locus. Using transgenic complementation of different Mla alleles, we confirm allele-specific recognition of wheat stripe rust by Mla. Our results show that major resistance genes contribute to the host species specificity of wheat stripe rust on barley and that a shared genetic architecture underlies resistance to the adapted pathogen barley powdery mildew and non-adapted pathogen wheat stripe rust.


2008 ◽  
Vol 98 (7) ◽  
pp. 803-809 ◽  
Author(s):  
Q. Guo ◽  
Z. J. Zhang ◽  
Y. B. Xu ◽  
G. H. Li ◽  
J. Feng ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most damaging diseases of wheat (Triticum aestivum) globally. High-temperature adult-plant resistance (HTAPR) and slow-rusting have great potential for sustainable management of the disease. The wheat cultivars Luke and Aquileja have been previously reported to possess HTAPR and slow-rusting to stripe rust, respectively. Aquileja displayed less number of stripes per unit leaf area than Luke, while Luke showed lower infection type than Aquileja at adult-plant stages of growth under high-temperature conditions. The objectives of this study were to confirm the resistances and to map the resistance genes in Luke and Aquileja. Luke was crossed with Aquileja, and 326 of the F2 plants were genotyped using 282 microsatellite primer pairs. These F2 plants and their derived F3 families were evaluated for resistance to stripe rust by inoculation in the fields and greenhouses of high- and low-temperatures. Infection type was recorded for both seedlings and adult plants, and stripe number was recorded for adult plants only. Two quantitative trait loci (QTL) were identified, on the short arm of chromosome 2B, to be significantly associated with infection type at adult-plant stages in the fields and in the high-temperature greenhouse. The locus distal to centromere, referred to as QYrlu.cau-2BS1, and the locus proximal to centromere, referred to as QYrlu.cau-2BS2, were separated by a genetic distance of about 23 cM. QYrlu.cau-2BS1 was flanked by the microsatellite markers Xwmc154 and Xgwm148, and QYrlu.cau-2BS2 was flanked by Xgwm148 and Xabrc167. QYrlu.cau-2BS1 and QYrlu.cau-2BS2 explained up to 36.6 and 41.5% of the phenotypic variation of infection type, respectively, and up to 78.1% collectively. No significant interaction between the two loci was detected. Another QTL, referred to as QYraq.cau-2BL, was detected on the long arm of chromosome 2B to be significantly associated with stripe number. QYraq.cau-2BL was flanked by the microsatellite markers Xwmc175 and Xwmc332, and it explained up to 61.5% of the phenotypic variation of stripe number. It is possible that these three QTL are previously unmapped loci for resistance to stripe rust.


1967 ◽  
Vol 45 (3) ◽  
pp. 291-307 ◽  
Author(s):  
H. Tollenaar ◽  
Byron R. Houston

Stripe rust of wheat, Puccinia striiformis f. sp. tritici, was found to oversummer in the Sierra Nevada at altitudes of 6000 ft or above on wild grasses belonging to Elymus spp., Hordeum spp., and Sitanion spp. The similarity of infection types of stripe rust isolates from various locations and hosts on a differential set of wheat cultivars suggests that only one race of P. striiformis f. sp. tritici occurs in California.Stripe rust on Poa spp. should be considered as P. striiformis f. sp. poae f. sp. nov. because of its entirely different host range and temperature requirements.A mean temperature of 22.3 °C or mean maximum temperature of 32.4 °C measured over a 10-day period is lethal to P. striiformis f. sp. tritici, thus accounting for the absence of this fungus during the summer in all regions of California but the Sierra Nevada and the coastal area. In late autumn, recurrence of the rust in the wheat-growing areas is initiated when east winds carry uredospores from the Sierra Nevada into the central part of the Sacramento – San Joaquin Valley, infecting volunteer wheat plants and early sown wheat. In late winter, a shortening of the latent period because of rising daily temperatures results in a rapid development of stripe rust at these infection sites and consequently in secondary spread of the rust to previously uninfected areas.


Sign in / Sign up

Export Citation Format

Share Document