scholarly journals The Role of the Inflammatory Mediators TNF‐α and IFN‐γ in the Hyperglycemia‐induced PECAM‐1 Ubiquitination and Degradation in Diabetic Retinopathy

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Randa S. Eshaq ◽  
Norman Harris
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 394.1-394
Author(s):  
A. Hukara ◽  
M. Rudnik ◽  
C. B. Rufer ◽  
O. Distler ◽  
P. Blyszczuk ◽  
...  

Background:Fos-like 2 (Fosl-2) is a transcription factor of the AP-1 family and has a broad range in inducing cellular changes affecting fibrosis and inflammatory responses. Pathological effects of Fosl-2 have been associated with systemic sclerosis (SSc). In addition, increased expression of Fosl-2 has been detected in human SSc monocyte-derived macrophages [1]. Monocytes and macrophages play a central role in activating and propagating acute inflammation followed by pathological fibrosis and organ dysfunction. The classification of the macrophage polarization phenotype can be assigned based on the stimulus, for example into classically-activated M(LPS), and alternatively-activated M(IL-4) macrophages [2]. However, the role of the Fosl-2 transcription factor in macrophage polarization remains elusive.Objectives:To investigate the role of Fosl-2 in macrophage polarization in SSc using Fosl-2 overexpressing transgenic (Fosl-2 tg) mice and human blood-derived macrophages from SSc patients.Methods:Thiogylcolate-elicited peritoneal macrophages were isolated from wild-type (wt) and Fosl-2 tg mice. Human peripheral CD14+ blood-derived monocytes were isolated and differentiated to macrophages (hMDM) from healthy controls and SSc patients. Murine and human macrophages were polarized with LPS (10 ng/ml), LPS + recombinant mouse IFN-γ (10 ng/ml), recombinant mouse, resp. human IL-4 (10 ng/ml) or remained untreated. Macrophage surface marker expression was assessed by flow cytometry using a mouse (F4/80, CD11b, CD86, CD80, CD38, MHCII, CD206, PD-L1, PD-L2, CD36) or human (CD38, CD40, CD86, PD-L2, PD-L1, CD163, CD206) designed polarization panel. Phagocytic activity was detected with pHrodo Red E.coli particles by flow cytometry. Gene expression and secretion of pro- and anti-inflammatory markers were measured by RT-qPCR, standard ELISAs and Griess Assay for nitric oxide production.Results:After LPS stimulation, mRNA levels of IL-1β (p<0.01, n=11-12), TNF-α (p=0.05, n=11-12) and IFN-γ (p<0.05, n=7) were reduced, whereas expression of IL-10 (p<0.05, n=11-12) was enhanced in Fosl-2 tg peritoneal macrophages in comparison to wt cells. Secretion of TNF-α (p<0.01, n=9-11) and nitric oxide (p<0.01, n=9) was impaired in Fosl-2 tg peritoneal macrophages compared to wt cells after LPS stimulation. Peritoneal macrophages were analyzed directly after isolation for macrophage polarization cell surface marker expression. Fosl-2 tg peritoneal macrophages showed an increase in the F4/80+CD11b+PD-L2+CD36+ cell population (p<0.01, n=3-6) compared to peritoneal macrophages from wt mice.The expression of cell surface markers of non-polarized and IL-4 stimulated SSc hMDM (n=17) showed an increased percentage of CD40+CD86+CD206+PD-L2+CD163+ cells (p<0.05) compared to healthy control hMDM (n=7). Phagocytic activity was enhanced in SSc hMDM (n=7) compared to healthy untreated (p<0.05), LPS (p=0.05) and IL-4 (p<0.05) hMDM (n=5).Conclusion:Our animal data indicates a role of Fosl-2 in regulating macrophage polarization with a shift from a classically-activated to an alternatively-activated phenotype. Similarly, SSc hMDM resemble a functional M(IL-4) alternative macrophage phenotype.Thus, maintaining a balanced proportion of classically- and alternatively-activated macrophage phenotypes may be an effective tool to control macrophage function in SSc.References:[1]Moreno-Moral, A., et al., Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann Rheum Dis, 2018. 77(4): p. 596-601.[2]Kania, G., M. Rudnik, and O. Distler, Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol, 2019. 15(5): p. 288-302.Disclosure of Interests:Amela Hukara: None declared, Michal Rudnik: None declared, Chantal Brigitta Rufer: None declared, Oliver Distler Speakers bureau: Actelion, Bayer, Boehringer Ingelheim, Medscape, Novartis, Roche, Menarini, Mepha, MSD, iQone, Pfizer, Consultant of: Abbvie, Actelion, Acceleron Pharma, Amgen, AnaMar, Arxx Therapeutics, Bayer, Baecon Discovery, Blade Therapeutics, Boehringer, CSL Behring, ChemomAb, Corpuspharma, Curzion Pharmaceuticals, Ergonex, Galapagos NV, GSK, Glenmark Pharmaceuticals, Inventiva, Italfarmaco, iQvia, Kymera, Medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Roche, Sanofi, UCB, Lilly, Target BioScience, Pfizer, Grant/research support from: Actelion, Bayer, Boehringer Ingelheim, Kymera Therapeutics, Mitsubishi Tanabe, Przemyslaw Blyszczuk: None declared, Gabriela Kania: None declared


2020 ◽  
Vol 21 (9) ◽  
pp. 3072
Author(s):  
Tim van der Houwen ◽  
Jan van Laar

In this both narrative and systematic review, we explore the role of TNF-α in the immunopathogenesis of Behçet’s disease (BD) and the effect of treatment with TNF-α blockers. BD is an auto-inflammatory disease, characterized by recurrent painful oral ulcerations. The pathogenesis of BD is not yet elucidated; it is assumed that TNF-α may play a key role. In the narrative review, we report an increased production of TNF-α, which may be stimulated via TLR-signaling, or triggered by increased levels of IL-1β and IFN-γ. The abundance of TNF-α is found in both serum and in sites of inflammation. This increased presence of TNF-α stimulates T-cell development toward pro-inflammatory subsets, such as Th17 and Th22 cells. Treatment directed against the surplus of TNF-α is investigated in the systematic review, performed according to the PRISMA guideline. We searched the Pubmed and Cochrane database, including comparative studies only. After including 11 studies, we report a beneficial effect of treatment with TNF-α blockers on the various manifestations of BD. In conclusion, the pivotal role of TNF-α in the immunopathogenesis of BD is reflected in both the evidence of their pro-inflammatory effects in BD and in the evidence of the positive effect of treatment on the course of disease in BD.


2021 ◽  
Vol 22 (5) ◽  
pp. 2388
Author(s):  
Masaru Yamaguchi ◽  
Shinichi Fukasawa

The aim of this paper is to provide a review on the role of inflammation in orthodontically induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM) in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement are involved in the occurrence of an inflammatory process in the periodontium, in response to orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1, -6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM. OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts. Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore, inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during orthodontic treatment could be used in preventing OIIRR and AOTM.


2021 ◽  
Vol 5 (3) ◽  
pp. 01-05
Author(s):  
Imteyaz Qamar

Diabetic retinopathy (DR) is a common complication amongst patients that have diabetes. It is a leading cause of blindness in middle age people. A large proportion of patients who have diabetes develop retinopathy. There are several immunological reasons associated with the pathophysiology of this disease. Role of several mediators that increase the oxidative stress and have a pro-inflammatory effect which leads to capillary occlusion and neovascularization (NV). Increased vasopermeability due to disruption of the blood-retinal barrier (BRB) leading to diabetic macular edema (DME). Immunotherapies utilise different compounds and target various inflammatory molecules like TNF-α and pathways such as PPARγ for treatment of this progressive disease. Inflammatory and pro-inflammatory pathways are found to have an essential role in promoting DR; therefore, targeting them provides a useful technique for curing DR.


Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5813-5823 ◽  
Author(s):  
Solenne Vigne ◽  
Gaby Palmer ◽  
Céline Lamacchia ◽  
Praxedis Martin ◽  
Dominique Talabot-Ayer ◽  
...  

Abstract IL-36α (IL-1F6), IL-36β (IL-1F8), and IL-36γ (IL-1F9) are members of the IL-1 family of cytokines. These cytokines bind to IL-36R (IL-1Rrp2) and IL-1RAcP, activating similar intracellular signals as IL-1, whereas IL-36Ra (IL-1F5) acts as an IL-36R antagonist (IL-36Ra). In this study, we show that both murine bone marrow-derived dendritic cells (BMDCs) and CD4+ T lymphocytes constitutively express IL-36R and respond to IL-36α, IL-36β, and IL-36γ. IL-36 induced the production of proinflammatory cytokines, including IL-12, IL-1β, IL-6, TNF-α, and IL-23 by BMDCs with a more potent stimulatory effect than that of other IL-1 cytokines. In addition, IL-36β enhanced the expression of CD80, CD86, and MHC class II by BMDCs. IL-36 also induced the production of IFN-γ, IL-4, and IL-17 by CD4+ T cells and cultured splenocytes. These stimulatory effects were antagonized by IL-36Ra when used in 100- to 1000-fold molar excess. The immunization of mice with IL-36β significantly and specifically promoted Th1 responses. Our data thus indicate a critical role of IL-36R ligands in the interface between innate and adaptive immunity, leading to the stimulation of T helper responses.


2021 ◽  
Author(s):  
Kim Chiok ◽  
Kevin Hutchison ◽  
Lindsay Grace Miller ◽  
Santanu Bose ◽  
Tanya A Miura

Critically ill COVID-19 patients infected with SARS-CoV-2 display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We used SARS-CoV-2 infected and glycosylated soluble SARS-CoV-2 Spike S1 subunit (S1) treated THP-1 human-derived macrophage-like cell line to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication, virus infection resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that S1 is a key viral component inducing inflammatory response in macrophages, independently of virus replication. Thus, virus-infected or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.


2002 ◽  
Vol 70 (3) ◽  
pp. 1352-1358 ◽  
Author(s):  
Catharina W. Wieland ◽  
Britta Siegmund ◽  
Giorgio Senaldi ◽  
Michael L. Vasil ◽  
Charles A. Dinarello ◽  
...  

ABSTRACT Chronic pulmonary infection with Pseudomonas aeruginosa is common in cystic fibrosis (CF) patients. P. aeruginosa lipopolysaccharide (LPS), phosholipase C (PLC), and exotoxin A (ETA) were evaluated for their ability to induce pulmonary inflammation in mice following intranasal inoculation. Both LPS and PLC induced high levels of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), IL-6, gamma interferon (IFN-γ), MIP-1α and MIP-2 in the lungs but did not affect IL-18 levels. ETA did not induce TNF-α and was a weak inducer of IL-1β, IL-6, macrophage inflammatory protein 1α (MIP-1α), and MIP-2. Remarkably, ETA reduced constitutive lung IL-18 levels. LPS was the only factor inducing IFN-γ. LPS, PLC, and ETA all induced cell infiltration in the lungs. The role of interferon regulatory factor-1 (IRF-1) in pulmonary inflammation induced by LPS, PLC, and ETA was evaluated. When inoculated with LPS, IRF-1 gene knockout (IRF-1 KO) mice produced lower levels of TNF-α, IL-1β, and IFN-γ than did wild-type (WT) mice. Similarly, a milder effect of ETA on IL-1β and IL-18 was observed for IRF-1 KO than for WT mice. In contrast, the cytokine response to PLC did not differ between WT and IRF-1 KO mice. Accordingly, LPS and ETA, but not PLC, induced expression of IRF-1 mRNA. IRF-1 deficiency had no effect on MIP-1α and MIP-2 levels and on cell infiltration induced by LPS, PLC, or ETA. Flow cytometric evaluation of lung mononuclear cells revealed strongly reduced percentages of CD8+ and NK cells in IRF-1 KO mice compared to percentages observed for WT mice. These data indicate that different virulence factors from P. aeruginosa induce pulmonary inflammation in vivo and that IRF-1 is involved in some of the cytokine responses to LPS and ETA.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 470-470
Author(s):  
Mani Mohindru ◽  
Perry Pahanish ◽  
Efstratios Katsoulidis ◽  
Robert Collins ◽  
Thomas Rogers ◽  
...  

Abstract Cytokines such as TNF α, IFN γ and others have been implicated in the pathogenesis of ineffective hematopoiesis in MDS and are thought to lead to the high rate of apoptosis in hematopoietic progenitors. The p38 Mitogen Activated Protein Kinase (MAPK) is an evolutionary conserved enzyme that is involved in many cellular processes including stress signaling. We have previously shown that the p38 MAP kinase is strongly activated by IFNs, TNF α, TGF β and other inhibitory cytokines in normal primary hematopoietic progenitors and plays an important role in the negative regulation of normal hematopoiesis. In the present study, we determined the role of the p38 MAPK in the pathogenesis of MDS evaluated its inhibition as a potential therapeutic strategy in this disease. p38 MAPK inhibition was achieved by the use of a novel p38 inhibitor - SD-282, a specific inhibitor of p38α MAP kinase. SD-282 performs very similarly in animal and cell models to a p38 inhibitor now in the clinic. We also transfected primary hematopoietic cells with flurescent labeled siRNAs against p38 and successfully downregulated the levels of the protein. Using these approaches, we demonstrate that pharmacological inhibition of the p38 MAPK can reverse the growth inhibitory effects of TNF α and IFN γ on erythroid and myeloid colony formation. This reversal of TNF α mediated inhibition correlates with significant reduction of apoptosis seen in human hematopoeitic progenitors pretreated with p38 inhibitor SD-282. Having established the importance of p38 MAPK in cytokine mediated inhibition of normal hematopoiesis, we performed colony forming assays with bone marrow CD34+ cells from 8 patients with MDS in the presence of either pharmacologic or siRNA based inhibitors of p38. All patients had refractory cytopenias with multilineage dysplasia. Our data indicates that SD-282 treatment strongly enhances both erythroid and myeloid colony formation in MDS CD34+ bone marrow cells in vitro. This increase was not observed when these progenitors were grown in the presence of negative controls - SB 202474 and the MEK inhibitor PD 98059. Similarly, an increase in hematopoietic colony formation, though of a lesser magnitude was seen when MDS bone marrow progenitors were transfected with siRNAs against p38 MAPK. To further determine the role of cytokines in the pathogenesis of MDS, we also used bone marrow derived sera from the same MDS patients. Our studies show exposure to patient derived sera led to the phosphorylation/activation of p38 MAPK in normal hematopoietic progenitors when compared to sera from healthy volunteers. Our studies also demonstrate that bone marrow derived sera from MDS patients can inhibit erythroid and myeloid colony formation of normal hematopoietic progenitors. This inhibition can be reversed by blocking p38 MAPK using SD-282, other p38 inhibitors and siRNAs. This finding confirms the role of marrow cytokine /serum factors in the ineffective hematopoiesis seen in MDS and suggests the importance of p38 MAPK activation in this phenomenon. Thus our studies show the p38 MAPK may be a common effector of inhibitory cytokine signaling in normal and MDS hematopoietic cells. These results provide a strong rationale for using p38 inhibition as a novel treatment strategy for MDS. Supported by Harris Methodist Foundation Grant, VISN-17 New Investigator Grant and VA Research Corp Grant to AV.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2490-2490
Author(s):  
Carolina Lanaro ◽  
Carla Fernanda Franco-Penteado ◽  
Dulcinéia M Albuquerque ◽  
Sara T.O. Saad ◽  
Nicola Conran ◽  
...  

Abstract Leukocytosis is frequently observed in sickle cell disease (SCD) in the absence of bacterial infection. An elevated baseline leukocyte count is associated with an increased risk of early death and leukocytes play a significant role in the initiation of vaso-occlusive events. Inflammation, cell adhesion to vascular endothelium, and subsequent endothelial injury appear to contribute to sickle cell anemia (SCA) vaso-occlusion. Furthermore, blood levels of inflammatory and anti-inflammatory cytokines are reported to be elevated (TNF-α, IL-6, IL-10, GM-CSF), both in steady state and during crisis, but reports have been conflicting and a conclusive role for these molecules in the disease remains to be established. Furthermore, the effect of hydroxyurea therapy (HU) on the release of inflammatory mediators is not understood. The aim of this study was to determine plasma levels and leukocyte gene expressions of inflammatory mediators in healthy controls (n=30), steady-state SCA patients (n=45) and SCA patients on HU therapy (n=24). qRT-PCR analysis was use to examine gene expression and ELISA protein production. TNF-α, IL-8 and PGE2 plasma levels were significantly higher in the plasma of steady-state SCA individuals, when compared to control individuals (2.95 ± 0.4 pg/ml; 16.5 ± 2.5 pg/ml; 5.7 ± 0.6 pg/ml; 128.3 ± 12.2 pg/ml vs 1.43 ± 0.2 pg/ml, 88.5 ± 5.9 pg/ml, P=0.006; P&lt;0.0001; P=0.012, respectively). HU therapy significantly reversed augmented TNF-α (1.6 ± 0.2 pg/ml, P=0.006) and, interestingly, increased plasma anti-inflammatory IL-10 (P&lt;0.05). IL-10, IFN-γ, COX-2 and iNOS gene expressions were unaltered in SCA mononuclear cells (MC), however gene expressions of TNF-α, IL-8 and the protective enzyme, heme oxygenase-1 (HO-1), were significantly higher compared to healthy controls (0.46 ± 0.01; 0.08 ± 0.02; 0.21 ± 0.05 vs 0.18 ± 0.04; 0.02 ± 0.005; 0.035 ± 0.008; respectively, P&lt;0.02). HU therapy was not associated with significantly altered SCA MC inflammatory gene expression, although COX-2 mRNA expression was decreased (0.11 ± 0.05; 0.37 ± 0.12, SCAHU and SCA, respectively; P&lt;0.05). In SCA neutrophils, gene expressions of IL-8, IFN-γ, iNOS and HO-1 were significantly higher compared to those of control subjects (0.32 ± 0.07; 0.69 ± 0.19; 0.19 ± 0.06; 0.33 ± 0.09, P=0.02, P=0.025, P&lt;0.05; P=0.027, respectively). Patients on HU therapy demonstrated lower iNOS and higher IL-10 neutrophil gene expressions compared to SCA not on HU therapy (0.038 ± 0.03; 0.72 ± 0.13, P&lt;0.05; P&lt;0.05, respectively). Taken together, data suggest that alterations in the gene expressions and productions of a number of pro-and anti-inflammatory mediators are present in SCA and knowledge of these pathways may be important for identifying novel drug targets for the disease.


Sign in / Sign up

Export Citation Format

Share Document