scholarly journals The role of adenosine A 2 receptors in the regulation of TNF‐α production and PGE 2 release in mouse peritoneal macrophages

2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Charles I. Ezeamuzie ◽  
Islam Khan
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 394.1-394
Author(s):  
A. Hukara ◽  
M. Rudnik ◽  
C. B. Rufer ◽  
O. Distler ◽  
P. Blyszczuk ◽  
...  

Background:Fos-like 2 (Fosl-2) is a transcription factor of the AP-1 family and has a broad range in inducing cellular changes affecting fibrosis and inflammatory responses. Pathological effects of Fosl-2 have been associated with systemic sclerosis (SSc). In addition, increased expression of Fosl-2 has been detected in human SSc monocyte-derived macrophages [1]. Monocytes and macrophages play a central role in activating and propagating acute inflammation followed by pathological fibrosis and organ dysfunction. The classification of the macrophage polarization phenotype can be assigned based on the stimulus, for example into classically-activated M(LPS), and alternatively-activated M(IL-4) macrophages [2]. However, the role of the Fosl-2 transcription factor in macrophage polarization remains elusive.Objectives:To investigate the role of Fosl-2 in macrophage polarization in SSc using Fosl-2 overexpressing transgenic (Fosl-2 tg) mice and human blood-derived macrophages from SSc patients.Methods:Thiogylcolate-elicited peritoneal macrophages were isolated from wild-type (wt) and Fosl-2 tg mice. Human peripheral CD14+ blood-derived monocytes were isolated and differentiated to macrophages (hMDM) from healthy controls and SSc patients. Murine and human macrophages were polarized with LPS (10 ng/ml), LPS + recombinant mouse IFN-γ (10 ng/ml), recombinant mouse, resp. human IL-4 (10 ng/ml) or remained untreated. Macrophage surface marker expression was assessed by flow cytometry using a mouse (F4/80, CD11b, CD86, CD80, CD38, MHCII, CD206, PD-L1, PD-L2, CD36) or human (CD38, CD40, CD86, PD-L2, PD-L1, CD163, CD206) designed polarization panel. Phagocytic activity was detected with pHrodo Red E.coli particles by flow cytometry. Gene expression and secretion of pro- and anti-inflammatory markers were measured by RT-qPCR, standard ELISAs and Griess Assay for nitric oxide production.Results:After LPS stimulation, mRNA levels of IL-1β (p<0.01, n=11-12), TNF-α (p=0.05, n=11-12) and IFN-γ (p<0.05, n=7) were reduced, whereas expression of IL-10 (p<0.05, n=11-12) was enhanced in Fosl-2 tg peritoneal macrophages in comparison to wt cells. Secretion of TNF-α (p<0.01, n=9-11) and nitric oxide (p<0.01, n=9) was impaired in Fosl-2 tg peritoneal macrophages compared to wt cells after LPS stimulation. Peritoneal macrophages were analyzed directly after isolation for macrophage polarization cell surface marker expression. Fosl-2 tg peritoneal macrophages showed an increase in the F4/80+CD11b+PD-L2+CD36+ cell population (p<0.01, n=3-6) compared to peritoneal macrophages from wt mice.The expression of cell surface markers of non-polarized and IL-4 stimulated SSc hMDM (n=17) showed an increased percentage of CD40+CD86+CD206+PD-L2+CD163+ cells (p<0.05) compared to healthy control hMDM (n=7). Phagocytic activity was enhanced in SSc hMDM (n=7) compared to healthy untreated (p<0.05), LPS (p=0.05) and IL-4 (p<0.05) hMDM (n=5).Conclusion:Our animal data indicates a role of Fosl-2 in regulating macrophage polarization with a shift from a classically-activated to an alternatively-activated phenotype. Similarly, SSc hMDM resemble a functional M(IL-4) alternative macrophage phenotype.Thus, maintaining a balanced proportion of classically- and alternatively-activated macrophage phenotypes may be an effective tool to control macrophage function in SSc.References:[1]Moreno-Moral, A., et al., Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann Rheum Dis, 2018. 77(4): p. 596-601.[2]Kania, G., M. Rudnik, and O. Distler, Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol, 2019. 15(5): p. 288-302.Disclosure of Interests:Amela Hukara: None declared, Michal Rudnik: None declared, Chantal Brigitta Rufer: None declared, Oliver Distler Speakers bureau: Actelion, Bayer, Boehringer Ingelheim, Medscape, Novartis, Roche, Menarini, Mepha, MSD, iQone, Pfizer, Consultant of: Abbvie, Actelion, Acceleron Pharma, Amgen, AnaMar, Arxx Therapeutics, Bayer, Baecon Discovery, Blade Therapeutics, Boehringer, CSL Behring, ChemomAb, Corpuspharma, Curzion Pharmaceuticals, Ergonex, Galapagos NV, GSK, Glenmark Pharmaceuticals, Inventiva, Italfarmaco, iQvia, Kymera, Medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Roche, Sanofi, UCB, Lilly, Target BioScience, Pfizer, Grant/research support from: Actelion, Bayer, Boehringer Ingelheim, Kymera Therapeutics, Mitsubishi Tanabe, Przemyslaw Blyszczuk: None declared, Gabriela Kania: None declared


2009 ◽  
Vol 6 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Yinan Wang ◽  
Xueling Cui ◽  
Guixiang Tai ◽  
Jingyan Ge ◽  
Nan Li ◽  
...  

2003 ◽  
Vol 71 (9) ◽  
pp. 4873-4882 ◽  
Author(s):  
Qian Li ◽  
Bobby J. Cherayil

ABSTRACT Toll-like receptors (TLRs) play an important role in the innate immune response, particularly in the initial interaction between the infecting microorganism and phagocytic cells, such as macrophages. We investigated the role of TLR4 during infection of primary murine peritoneal macrophages with Salmonella enterica serovar Typhimurium. We found that macrophages from the C3H/HeJ mouse strain, which carries a functionally inactive Tlr4 gene, exhibit marked impairment of tumor necrosis factor alpha (TNF-α) secretion in response to S. enterica serovar Typhimurium infection. However, activation of extracellular growth factor-regulated kinase and NF-κB signaling pathways was relatively unaffected, as was increased expression of TNF-α mRNA. Furthermore, macrophage tolerance, which is associated with increased expression of the NF-κB p50 and p52 subunits, was induced by S. enterica serovar Typhimurium even in the absence of functional TLR4. These results indicate that during infection of macrophages by S. enterica serovar Typhimurium, TLR4 signals are required at a posttranscriptional step to maximize secretion of TNF-α. Signals delivered by pattern recognition receptors other than TLR4 are sufficient for the increased expression of the TNF-α transcript and at least some genes associated with macrophage tolerance.


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901
Author(s):  
Wei Chen ◽  
Ying-Ying Zhang ◽  
Zhuo Wang ◽  
Xiao-Hua Luo ◽  
Wan-Chun Sun ◽  
...  

Two new (3, 4) and two known phenolic derivatives (1, 2) were isolated from Radix Astragali. The structures of 1–4 were elucidated by extensive spectroscopic analysis. The anti-inflammatory activities of the isolated compounds were evaluated in LPS-induced mouse peritoneal macrophages. All four compounds exhibited potent inhibitory effects on TNF-α production and TNF-α, COX-2, IL-1β, IL-6 and iNOS mRNA expression at 50 μM.


2007 ◽  
Vol 76 (1) ◽  
pp. 270-277 ◽  
Author(s):  
Takashi Shimizu ◽  
Yutaka Kida ◽  
Koichi Kuwano

ABSTRACT The pathogenesis of Mycoplasma pneumoniae infection is considered to be in part attributable to excessive immune responses. In this study, we investigated whether synthetic lipopeptides of subunit b of F0F1-type ATPase (F0F1-ATPase), NF-κB-activating lipoprotein 1 (N-ALP1), and N-ALP2 (named FAM20, sN-ALP1, and sN-ALP2, respectively) derived from M. pneumoniae induce cytokine and chemokine production and leukocyte infiltration in vivo. Intranasal administration of FAM20 and sN-ALP2 induced infiltration of leukocyte cells and production of chemokines and cytokines in bronchoalveolar lavage fluid, but sN-ALP1 failed to do so. The activity of FAM20 was notably higher than that of sN-ALP2. FAM20 and sN-ALP2 induced tumor necrosis factor alpha (TNF-α) through Toll-like receptor 2 in mouse peritoneal macrophages. Moreover, in the range of low concentrations of lipopeptides, FAM20 showed relatively high activity of inducing TNF-α in mouse peritoneal macrophages compared to synthetic lipopeptides such as MALP-2 and FSL-1, derived from Mycoplasma fermentans and Mycoplasma salivarium, respectively. These findings indicate that the F0F1-ATPase might be a key molecule in inducing cytokines and chemokines contributing to inflammatory responses during M. pneumoniae infection in vivo.


Cartilage ◽  
2019 ◽  
pp. 194760351987824 ◽  
Author(s):  
Mami Takano ◽  
Naoto Hirose ◽  
Chikako Sumi ◽  
Makoto Yanoshita ◽  
Sayuri Nishiyama ◽  
...  

Background Angiopoietin-like protein 2 (ANGPTL2) is a secreted molecule with numerous physiologic and pathologic functions, for example, in angiogenesis, hematopoiesis, and tumorigenesis. Although recent studies implicated ANGPTL2 in chronic inflammation in mouse peritoneal macrophages, human ligamentum flavum fibroblasts, and human retinal microvascular endothelial cells, the mechanism underlying ANGPTL2-associated inflammation in chondrocytes remains unclear. Therefore, it was investigated whether ANGPTL2 is expressed in or functions in chondrocytes. Methods Expression of ANGPTL2 and its receptor, integrin α5β1 were examined over time in ATDC5 cells using real-time RT-PCR (reverse transcription–polymerase chain reaction) analysis. ATDC5 cells were then incubated with or without ANGPTL2 for 3 hours, and expression of the IL-1β, TNF-α, COX-2, aggrecanase (ADAMTS)-5, matrix metalloproteinase (MMP)-3, and MMP-13 genes were examined using real-time RT-PCR. Additionally, phosphorylation of ERK, JNK, p38, Akt, and NF-κB was examined by western blotting. Furthermore, it was also investigated for the effect of anti-integrin α5β1 antibody on the expression of inflammatory markers and intracellular signaling pathways. Results ANGPTL2 induced the phosphorylation of all 3 MAPKs, Akt, and NF-κB and dramatically upregulated the expression of inflammation-related factor genes. Inhibiting the activation of integrin α5β1 suppressed these reactions. Conclusion ANGPTL2 may induce inflammatory factors by stimulating the integrin α5β1/MAPKs, Akt, and NF-κB signaling pathway.


1975 ◽  
Vol 142 (5) ◽  
pp. 1263-1282 ◽  
Author(s):  
F M Griffin ◽  
J A Griffin ◽  
J E Leider ◽  
S C Silverstein

These experiments were designed to evaluate the role of macrophage plasma membrane receptors for the third component of complement (C) and for the Fc portion of IgG in the ingestion phase of phagocytosis. Sheep erythrocyte (E) were coated with anti-E IgG [E(IgG)]; these E(IgG) were then attached to cultivated monolayers of mouse peritoneal macrophages under conditions which reversibly inhibit ingestion of E(IgG). The E(IgG)-macrophage complexes were further incubated under similar conditions with an antimacrophage IgG fraction which blocks Fc receptor-mediated ingestion but has no effect upon ingestion mediated by other phagocytic receptors. When these cultures were subsequently incubated under conditions optimal for particle ingestion, phagocytosis of the IgG-coated erythrocytes did not occur; the erythrocytes remained bound to the Fc receptors of the macrophage plasma membrane. To determine whether ligands must cover the entire surface of an attached particle to permit ingestion of that particle, C-coated E [E(IgM)C] were bound to the C receptors of thioglycollate-induced (activated) macrophages at 4 degrees C. E(IgM)C-macrophage complexes were then trypsinized at 4 degrees C, a procedure which resulted in cleavage of erythrocyte-bound C3b molecules to a form of C3 not recognized by the macrophage receptors for C3b. Under the conditions used, trypsin did not affect the attachment of E(IgM)C to the macrophage surface or the macrophage receptors for C3b. When these trypsin treated E(IgM)C-macrophage complexes were incubated at 37 degrees C, the bound E(IgM)C were not ingested; the erythrocytes remained attached to the macrophage plasma membrane via the macrophage's C receptors. These results indicate that attachment of a particle to specific receptors on the macrophage plasma membrane is not sufficient to trigger ingestion of that particle. Rather, ingestion requires the sequential, circumferential interaction of particle-bound ligands with specific plasma membrane receptors not involved in the initial attachment process.


Sign in / Sign up

Export Citation Format

Share Document