What Is the Impact of Automated Synovial Cell Counting on Different Aseptic Causes and Periprosthetic Conditions Associated with Revision THA?

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hussein Abdelaziz ◽  
Alaa Aljawabra ◽  
Markus Rossmann ◽  
Calvin Shum Tien ◽  
Mustafa Citak ◽  
...  
2022 ◽  
Vol 22 ◽  
Author(s):  
Meng Li ◽  
Jiang Chang ◽  
Honglin Ren ◽  
Defeng Song ◽  
Jian Guo ◽  
...  

Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaomeng Zhang ◽  
Ningyi Ma ◽  
Weiqiang Yao ◽  
Shuo Li ◽  
Zhigang Ren

Abstract Background The DNA damage and repair pathway is considered a promising target for developing strategies against cancer. RAD51, also known as RECA, is a recombinase that performs the critical step in homologous recombination. RAD51 has recently received considerable attention due to its function in tumor progression and its decisive role in tumor resistance to chemotherapy. However, its role in pancreatic cancer has seldom been investigated. In this report, we provide evidence that RAD51, regulated by KRAS, promotes pancreatic cancer cell proliferation. Furthermore, RAD51 regulated aerobic glycolysis by targeting hypoxia inducible factor 1α (HIF1α). Methods TCGA (The Cancer Genome Atlas) dataset analysis was used to examine the impact of RAD51 expression on overall survival of pancreatic cancer patients. Lentivirus-mediated transduction was used to silence RAD51 and KRAS expression. Quantitative real-time PCR and western blot analysis validated the efficacy of the knockdown effect. Analysis of the glycolysis process in pancreatic cancer cells was also performed. Cell proliferation was determined using a CCK-8 (Cell Counting Kit-8) proliferation assay. Results Pancreatic cancer patients with higher levels of RAD51 exhibited worse survival. In pancreatic cancer cells, RAD51 positively regulated cell proliferation, decreased intracellular reactive oxygen species (ROS) production and increased the HIF1α protein level. KRAS/MEK/ERK activation increased RAD51 expression. In addition, RAD51 was a positive regulator of aerobic glycolysis. Conclusion The present study reveals novel roles for RAD51 in pancreatic cancer that are associated with overall survival prediction, possibly through a mechanism involving regulation of aerobic glycolysis. These findings may provide new predictive and treatment targets for pancreatic cancer.


2019 ◽  
Vol 9 (12) ◽  
pp. 1662-1669
Author(s):  
Lianman He ◽  
Yong Wang ◽  
Min Liu ◽  
Ling Li

Essential hypertension (EH) is a main risk factor for cardiovascular disease. Vitamin D (VD) levels are inversely related to hypertension. MicroRNAs (miRNA or miR) are involved in various diseases, including EH. Till now, the role of miR-199a-5p in EH remains unclear. Cell counting kit-8, flow cytometry and Transwell assay were carried out in the current study to study the effects of VD on the biological behavior of Human umbilical vein endothelial cells (HUVECs). The expression of miR-199a-5p was subsequently determined using reverse transcription-quantitative (RT-q) PCR. TargetScan prediction and double luciferase reporter gene detection were applied to confirm the binding sites between Sirtuin 1 (SIRT1) and miR-199a-5p. The results showed that VD promoted the proliferation and migration of HUVECs and reduced cell apoptosis. VD was observed to significantly reduced miR-199a-5p level in HUVECs. Transfection of the miR-199a-5p mimic was indicated to reverse the influence of VD on the proliferation, migration and apoptosis of HUVECs. SIRT1 was also confirmed to be a target gene of miR-199a-5p. Western blot analysis and RT-qPCR were performed to measure the impact of VD on the SIRT1/AMP-activated protein kinase (AMPK)- /NFB pathway. The results demonstrated that VD increased SIRT1 expression and p-AMPK- and decreased the expression of p-p65, and the transfection of miR-199a-5p mimic reversed these effects. In conclusion, the results of the current study indicated that VD may relieve EH through promoting vascular endothelial cell function via regulating miR-199a-5p.


2021 ◽  
Vol 16 (1) ◽  
pp. 1293-1302
Author(s):  
Yiming Li ◽  
Lidan Xiong ◽  
Jie Tang ◽  
Ru Dai ◽  
Shiyi Li ◽  
...  

Abstract Multiple methodologies have been reported to facilitate skin-derived precursor (SKP) growth, but the impact of plating density on SKP growth has not been studied. To determine the optimal plating density, we used six plating densities and two types of flasks for mouse SKP (mSKP) culture. On the 14th day, the number, diameter, and viability of mSKP spheres were compared by morphological assessment and cell counting kit 8, and we found the optimal plating density was 2.5 × 105–5 × 105 cells/mL. In addition, we investigated the correlation between the SKP spheres and the adherent cell colonies in the serum-free culture system. We treated the adherent cell colonies with two culture conditions and characterized the cells generated from two conditions by immunocytochemistry and induced differentiation, respectively. The results elucidated that the adherent cell colonies differentiated into either mSKPs or dermal mesenchymal stem cells under appropriate culture conditions. In conclusion, mSKP spheres differentiated from the adherent cell colonies. The optimal plating density significantly promoted and advanced the proliferation of adherent cell colonies, which optimized mSKP growth and yield. The adherent cell colonies possessed the capacity of differentiating into different types of cells under appropriate culture conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Cai-Xia Liu ◽  
Yu-Rong Tan ◽  
Yang Xiang ◽  
Chi Liu ◽  
Xiao-Ai Liu ◽  
...  

Oxidative stress induced by hypoxia/ischemia resulted in the excessive reactive oxygen species (ROS) and the relative inadequate antioxidants. As the initial barrier to environmental pollutants and allergic stimuli, airway epithelial cell is vulnerable to oxidative stress. In recent years, the antioxidant effect of hydrogen sulfide (H2S) has attracted much attention. Therefore, in this study, we explored the impact of H2S on CoCl2-induced cell injury in 16HBE14o- cells. The effect of CoCl2on the cell viability was detected by Cell Counting Kit (CCK-8) and the level of ROS in 16HBE14o- cells in response to varying doses (100–1000μmol/L) of CoCl2(a common chemical mimic of hypoxia) was measured by using fluorescent probe DCFH-DA. It was shown that, in 16HBE14o- cells, CoCl2acutely increased the ROS content in a dose-dependent manner, and the increased ROS was inhibited by the NaHS (as a donor of H2S). Moreover, the calcium ion fluorescence probe Fura-2/AM and fluorescence dye Rh123 were used to investigate the intracellular calcium concentration ([Ca2+]i) and mitochondria membrane potential (MMP) in 16HBE14o- cells, respectively. In addition, we examined apoptosis of 16HBE14o- cells with Hoechst 33342. The results showed that the CoCl2effectively elevated the Ca2+influx, declined the MMP, and aggravated apoptosis, which were abrogated by NaHS. These results demonstrate that H2S could attenuate CoCl2-induced hypoxia injury via reducing ROS to perform an agonistic role for the Ca2+influx and MMP dissipation.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5311
Author(s):  
Michael Nemec ◽  
Hans Magnus Bartholomaeus ◽  
Michael H. Bertl ◽  
Christian Behm ◽  
Hassan Ali Shokoohi-Tabrizi ◽  
...  

Invisalign aligners have been widely used to correct malocclusions, but their effect on oral cells is poorly known. Previous research evaluated the impact of aligners’ eluates on various cells, but the cell behavior in direct contact with aligners is not yet studied. In the present study, we seeded oral epithelial cells (cell line Ca9-22) directly on Invisalign SmartTrack material. This material is composed of polyurethane and co-polyester and exhibit better mechanical characteristics compared to the predecessor. Cell morphology and behavior were investigated by scanning electron microscopy and an optical cell moves analyzer. The effect of aligners on cell proliferation/viability was assessed by cell-counting kit (CCK)-8 and 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay and live/dead staining. The expression of inflammatory markers and proteins involved in epithelial barrier function was measured by qPCR. Cells formed cluster-like structures on aligners. The proliferation/viability of cells growing on aligners was significantly lower (p < 0.05) compared to those growing on tissue culture plastic (TCP). Live/dead staining revealed a rare occurrence of dead cells on aligners. The gene expression level of all inflammatory markers in cells grown on aligners’ surfaces was significantly increased (p < 0.05) compared to cells grown on TCP after two days. Gene expression levels of the proteins involved in barrier function significantly increased (p < 0.05) on aligners’ surfaces after two and seven days of culture. Aligners’ material exhibits no cytotoxic effect on oral epithelial cells, but alters their behavior and the expression of proteins involved in the inflammatory response, and barrier function. The clinical relevance of these effects has still to be established.


2020 ◽  
Author(s):  
Li Li ◽  
Xiao Zhang ◽  
Hailong Yang ◽  
Xiaoli Xu ◽  
Yuan Chen ◽  
...  

Abstract BackgroundAs a well-known cancer-related miRNA, miR-193b-3p is enriched in skeletal muscle but dysregulated in muscle disease. However, mechanism underpinning has not been addressed so far. MethodsHere, we probed the impact of miR-193b-3p on myogenesis by mainly using goat tissues and skeletal muscle satellite cells (MuSCs), with combined methods including RNA-seq to profile the transcriptome affected by miR-193b-3p, cell-counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) for cell proliferation assay, and RNA-RNA dual-labeled fluorescence in situ hybridization (FISH) for RNA colocalization. ResultsmiR-193b-3p is highly enriched in goat skeletal muscles, and ectopic miR-193b-3p promotes MuSCs proliferation and differentiation. Moreover, insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is the most activated insulin signaling genes when overexpression miR-193b-3p and the miRNA recognition element (MRE) within IGF1BP1 3ʹ untranslated region (UTR) is indispensable for its activation caused by miR-193b-3p. Consistently, expression patterns and function of IGF2BP1 were similar to those of miR-193b-3p in tissues and MuSCs. While the overexpression of miR-193b-3p failed to induce pax7 expression and myoblast proliferation when IGF2BP1 knockdown. Furthermore, miR-193b-3p destabilized IGF2BP1 mRNA but unexpectedly promoted levels of IGF2BP1 heteronuclear RNA (hnRNA) dramatically. Moreover, miR-193b-3p could enhance fly luciferase activity when inserted upstream of its promoter, and induce neighboring genes of itself. However, miR-193b-3p inversely regulated IGF2BP1 and myoblast proliferation in mouse C2C12 myoblast. These data unveil that goat miR-193b-3p promotes myoblast proliferation via activating IGF2BP1 by binding on its 3ʹ UTR.ConclusionsOur novel findings highlight the positive regulation between miRNA and its target genes in muscle development, which further extends the repertoire of miRNA functions.


2021 ◽  
Author(s):  
Yue Li ◽  
Mingxu Fu ◽  
Ling Guo ◽  
Xiaoxiao Sun ◽  
Yuhang Chen ◽  
...  

Abstract Background: Metastases and recurrence of ovarian cancer after surgery and chemotherapy account for most cancer-related deaths, yet the mechanism underlying metastases and recurrence remains poorly understood. Recent evidence demonstrates that although long-lasting cells were considered tumor suppressors, senescent cancer cells, can induce the metastases and recurrence. In this study, we focused on the fate of ovarian cancer cells treated with carboplatin and explored the mechanism underlying ovarian cancer cell recovery from chemotherapy-induced senescence. Methods: SÁ-β-galactosidase staining was used to detect the impact of carboplatin on senescence of ovarian cancer cells. Cell proliferation was determined using direct cell counting, clone formation assay and 3D tumor spheroid formation assay. Lentivirus-mediated transduction was used to silence or upregulate EGFR expression. Quantitative real-time PCR and western blot analysis validated the efficacy of the knockdown or overexpression effect. Immunofluorescence staining and western blot analysis were used to examined the expression of EGFR and NF-KB. Cell death was determined using trypan blue staining assay. Results: Ovarian cancer cells treated by carboplatin exhibit a senescence-like phenotype indicated by SA-β-galactosidase positive staining. Importantly, carboplatin-induced senescence-like phenotype is reversible. In ovarian cancer cells, EGFR positively regulated cells proliferation, decreased carboplatin-induced senescence and upregulated the NF-κB1 protein level. EGFR/NF-κB1 upregulation promoted the recovery of ovarian cancer cells from senescence and chemoresistance to carboplatin. Conclusions: Ovarian cancer cells treated with carboplatin displayed a reversible senescence-like phenotype that could be combined with EGFR or NF-κB1 inhibitors to improve treatment effects.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2521-2521
Author(s):  
Huihui Ma ◽  
Judith Ziegler ◽  
Ren-Tien Feng ◽  
Suzanne Lentzsch ◽  
Markus Mapara

Abstract Multiple myeloma (MM) is a plasma cell proliferative disorder that results in considerable morbidity and mortality. JSI-124 is a plant natural product identified previously as Cucurbitacin I, isolated from various plant families such as the Cucurbitaceae and Cruciferae and has been recently described as a specific inhibitor of Janus Kinase-2 (JAK-2)/signal transducer and activator of transcription-3 (STAT3). Based on the critical role of the IL-6/STAT3 pathway in MM we studied the effects of JSI-124 on different MM cells in vitro. Different human myeloma cell lines including MM1.S, IM9, OPM-2, RPMI-8226, ARH77 in addition to the murine 5TGM myeloma cell lines were incubated with increasing concentrations of JSI-124. The impact of JSI-124 on cell proliferation, cell cycle and induction of apoptosis was studied using [3H]-Thymidine incorporation, cell counting, flow cytometry and Annexin/PI staining and caspase 3, 8 and 9 activation. JSI-124 was able to inhibit proliferation and induce apoptosis in several MM cell lines, including MM1.S, IM9, OPM-2, RPMI-8226, ARH77, U266 and 5TGM in a dose- and time-dependent manner. JSI-124 lead to activation of caspase 3, 8 and 9 indicating involvement of both extrinsic and intrinsic apoptotic pathways. JSI-124-mediated induction of apoptosis was independent of JAK2/STAT3 inhibition as MM1.S and 5TGM cells, which lack constitutive STAT3 (Tyr705) activation were equally sensitive to JSI-124 compared to U266 cells which show a constitutive STAT3 Tyr705 phosphorylation. However, JSI-124 treatment was able to abrogate IL-6 and bone marrow stroma (BMSC)-induced STAT3 (Tyr705) activation in MM1.S cells. In addition we were able to observe JSI-124 dependent inhibition of constitutive STAT3 (Ser727) activation in MM cell lines. To further delineate the mechanism underlying its anti-myeloma effects we studied the impact of JSI-124 treatment on NF-κB, MAPK and PI3K pathways. Indeed, JSI-124 treatment resulted in inhibition of p-p65, p-MEK1,2 and p-Akt underscoring the effect of JSI-124 on STAT3-independent signaling. Our results indicate that JSI-124 is a powerful direct inhibitor of myeloma cells blocking constitutive and IL-6/BMSC-dependent STAT3 activation in addition to STAT3 independent signaling pathways. JSI-124 might therefore serve as a potent novel anti-myeloma agent targeting both myeloma cells and its bone marrow microenvironment. Further studies are warranted to evaluate the in vivo efficacy of JSI-124 and identify the STAT3 independent pathways contributing to myeloma cell growth and induction of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document