scholarly journals Evolutionary convergence and biologically embodied cognition

2017 ◽  
Vol 7 (3) ◽  
pp. 20160123 ◽  
Author(s):  
Fred A. Keijzer

The study of evolutionary patterns of cognitive convergence would be greatly helped by a clear demarcation of cognition. Cognition is often used as an equivalent of mind, making it difficult to pin down empirically or to apply it confidently beyond the human condition. Recent developments in embodied cognition and philosophy of biology now suggest an interpretation that dissociates cognition from this mental context. Instead, it anchors cognition in a broad range of biological cases of intelligence, provisionally marked by a basic cognitive toolkit. This conception of cognition as an empirically based phenomenon provides a suitable and greatly expanded domain for studies of evolutionary convergence. This paper first introduces this wide, biologically embodied interpretation of cognition. Second, it discusses examples drawn from studies on bacteria, plants and fungi that all provide cases fulfilling the criteria for this wide interpretation. Third, the field of early nervous system evolution is used to illustrate how biologically embodied cognition raises new fundamental questions for research on animal cognition. Finally, an outline is given of the implications for the evolutionary convergence of cognition.

2020 ◽  
Vol 29 (3) ◽  
pp. 255-260
Author(s):  
Joseph Cesario ◽  
David J. Johnson ◽  
Heather L. Eisthen

A widespread misconception in much of psychology is that (a) as vertebrate animals evolved, “newer” brain structures were added over existing “older” brain structures, and (b) these newer, more complex structures endowed animals with newer and more complex psychological functions, behavioral flexibility, and language. This belief, although widely shared in introductory psychology textbooks, has long been discredited among neurobiologists and stands in contrast to the clear and unanimous agreement on these issues among those studying nervous-system evolution. We bring psychologists up to date on this issue by describing the more accurate model of neural evolution, and we provide examples of how this inaccurate view may have impeded progress in psychology. We urge psychologists to abandon this mistaken view of human brains.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1778
Author(s):  
Pakhuri Mehta ◽  
Przemysław Miszta ◽  
Sławomir Filipek

The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer’s disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014–2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.


2016 ◽  
Vol 26 (20) ◽  
pp. R1101-R1108 ◽  
Author(s):  
Irving E. Wang ◽  
Thomas R. Clandinin

Primates ◽  
2021 ◽  
Author(s):  
Haruka Fujita ◽  
Koji Fujita

AbstractHuman language is a multi-componential function comprising several sub-functions each of which may have evolved in other species independently of language. Among them, two sub-functions, or modules, have been claimed to be truly unique to the humans, namely hierarchical syntax (known as “Merge” in linguistics) and the “lexicon.” This kind of species-specificity stands as a hindrance to our natural understanding of human language evolution. Here we challenge this issue and advance our hypotheses on how human syntax and lexicon may have evolved from pre-existing cognitive capacities in our ancestors and other species including but not limited to nonhuman primates. Specifically, we argue that Merge evolved from motor action planning, and that the human lexicon with the distinction between lexical and functional categories evolved from its predecessors found in animal cognition through a process we call “disintegration.” We build our arguments on recent developments in generative grammar but crucially depart from some of its core ideas by borrowing insights from other relevant disciplines. Most importantly, we maintain that every sub-function of human language keeps evolutionary continuity with other species’ cognitive capacities and reject a saltational emergence of language in favor of its gradual evolution. By doing so, we aim to offer a firm theoretical background on which a promising scenario of language evolution can be constructed.


2021 ◽  
Author(s):  
Adriano D'Aloia

A walk suspended in mid-air, a fall at breakneck speed towards a fatal impact with the ground, an upside-down flip into space, the drift of an astronaut in the void… Analysing a wide range of films, this book brings to light a series of recurrent aesthetic motifs through which contemporary cinema destabilizes and then restores the spectator’s sense of equilibrium. The ‘tensive motifs’ of acrobatics, fall, impact, overturning, and drift reflect our fears and dreams, and offer imaginary forms of transcendence of the limits of our human condition, along with an awareness of their insurmountable nature. Adopting the approach of ‘Neurofilmology’—an interdisciplinary method that puts filmology, perceptual psychology, philosophy of mind, and cognitive neuroscience into dialogue—, this book implements the paradigm of embodied cognition in a new ecological epistemology of the moving-image experience.


2021 ◽  
pp. 014556132110489
Author(s):  
Xiangming Meng ◽  
Yuandan Pan

Objectives The pandemic has affected over 182 million coronavirus disease 2019 (COVID-19) cases worldwide. Accumulated evidence indicates that anosmia is one of the significant characteristics of COVID-19 with a high prevalence. However, many aspects of COVID-19-induced anosmia are still far from being fully understood. The purpose of this review is to summarize recent developments in COVID-19-induced anosmia to increase awareness of the condition. Methods A literature search was carried out using the PubMed, Embase, Web of Science, and Scopus. We reviewed the latest literature on COVID-19-induced anosmia, including mechanisms of pathogenesis, olfactory testing, anosmia as predictive tool, pathological examinations, imaging findings, affected factors, co-existing diseases, treatments, prognosis, hypothesis theories, and future directions. Results The possible pathogenesis of COVID-19-induced anosmia may involve inflammation of the olfactory clefts and damage to the olfactory epithelium or olfactory central nervous system by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The D614G spike variant may also play a role in the increased number of anosmia patients. Anosmia may also be an essential indicator of COVID-19 spread and an early indicator of the effectiveness of political decisions. The occurrence and development of COVID-19-induced anosmia may be influenced by smoking behaviors and underlying diseases such as type 2 diabetes, gastroesophageal disorders, and rhinitis. Most patients with COVID-19-induced anosmia can fully or partially recover their olfactory function for varying durations. COVID-19-induced anosmia can be treated with various approaches such as glucocorticoids and olfactory training. Conclusion Anosmia is one of the main features of COVID-19 and the underlying disease of the patient may also influence its occurrence and development. The possible pathogenesis of COVID-19-induced anosmia is very complicated, which may involve inflammation of the olfactory clefts and damage to the olfactory epithelium or olfactory central nervous system.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 542
Author(s):  
Maria Inês Teixeira ◽  
Maria Helena Amaral ◽  
Paulo C. Costa ◽  
Carla M. Lopes ◽  
Dimitrios A. Lamprou

Neurodegenerative diseases (NDs) bear a lot of weight in public health. By studying the properties of the blood-brain barrier (BBB) and its fundamental interactions with the central nervous system (CNS), it is possible to improve the understanding of the pathological mechanisms behind these disorders and create new and better strategies to improve bioavailability and therapeutic efficiency, such as nanocarriers. Microfluidics is an intersectional field with many applications. Microfluidic systems can be an invaluable tool to accurately simulate the BBB microenvironment, as well as develop, in a reproducible manner, drug delivery systems with well-defined physicochemical characteristics. This review provides an overview of the most recent advances on microfluidic devices for CNS-targeted studies. Firstly, the importance of the BBB will be addressed, and different experimental BBB models will be briefly discussed. Subsequently, microfluidic-integrated BBB models (BBB/brain-on-a-chip) are introduced and the state of the art reviewed, with special emphasis on their use to study NDs. Additionally, the microfluidic preparation of nanocarriers and other compounds for CNS delivery has been covered. The last section focuses on current challenges and future perspectives of microfluidic experimentation.


2018 ◽  
Vol 27 (3) ◽  
pp. 167-173 ◽  
Author(s):  
Hidetaka Yakura

Concerning what signifies the minimal requirements for a process to be designated cognitive, various criteria have been proposed, but the problem has not been settled. The important thing to consider in establishing the criteria is which criterion has stronger explanatory power. Recent developments in immunology demonstrate that the immune system is omnipresent in the realm of living beings, including bacteria and archaea. Although the structural characteristics of immune systems are significantly different among species, the fundamental functional components, namely, recognition, information integration, reaction, and memory, are well conserved. Interestingly, these adaptive features are superimposed on those of the central nervous system. Given that adaptive cognitive ability is a prerequisite for the existence and the survival of living organisms, these results may be compatible with the idea that in bacteria without an apparent nervous system, the immune system performs neural-like functions. The presence of the clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR associated protein (Cas) systems as a cognitive system in the earliest living organisms suggests that one of the fundamental functions is conserved throughout evolution. Furthermore, this interpretation can evade the critiques against the current biological paradigm that demand that cognitive mechanisms be preceded by organisms in the earlier stages of evolution, thus providing better and stronger explanatory power. I thus propose that genetic and biochemical machinery represented by the bacterial immune system serves as a minimal cognitive system.


Parasitology ◽  
1996 ◽  
Vol 113 (S1) ◽  
pp. S47-S72 ◽  
Author(s):  
D. W. Halton ◽  
M. K. S. Gustafsson

SUMMARYAs the most primitive metazoan phylum, the Platyhelminthes occupies a unique position in nervous system evolution. Centrally, their nervous system consists of an archaic brain from which emanate one or more pairs of longitudinal nerve cords connected by commissures; peripherally, a diverse arrangement of nerve plexuses of varying complexity innervate the subsurface epithelial and muscle layers, and in the parasitic taxa they are most prominent in the musculature of the attachment organs and egg-forming apparatus. There is a range of neuronal-cell types, the majority being multi- and bipolar. The flatworm neuron is highly secretory and contains a heterogeneity of vesicular inclusions, dominated by densecored vesicles, whose contents may be released synaptically or by paracrine secretion for presumed delivery to target cells via the extracellular matrix. A wide range of sense organ types is present in flatworms, irrespective of life-styles. The repertoire of neuronal substances identified cytochemically includes all of the major candidate transmitters known in vertebrates. Two groups of native flatworm neuropeptides have been sequenced, neuropeptide F and FMRFamide-related peptides (FaRPs), and immunoreactivities for these have been localised in dense-cored neuronal vesicles in representatives of all major fiatworm groups. There is evidence of co-localisation of peptidergic and cholinergic elements; serotoninergic components generally occupy a separate set of neurons. The actions of neuronal substances in flatworms are largely undetermined, but FaRPs and 5-HT are known to be myoactive in all of the major groups, and there is immuno-cytochemical evidence that they have a role in the mechanism of egg assembly.


Sign in / Sign up

Export Citation Format

Share Document