scholarly journals Nest size is predicted by female identity and the local environment in the blue tit ( Cyanistes caeruleus ), but is not related to the nest size of the genetic or foster mother

2018 ◽  
Vol 5 (4) ◽  
pp. 172036
Author(s):  
Louis G. O'Neill ◽  
Timothy H. Parker ◽  
Simon C. Griffith

The potential for animals to respond to changing climates has sparked interest in intraspecific variation in avian nest structure since this may influence nest microclimate and protect eggs and offspring from inclement weather. However, there have been relatively few large-scale attempts to examine variation in nests or the determinates of individual variation in nest structure within populations. Using a set of mostly pre-registered analyses, we studied potential predictors of variation in the size of a large sample (803) of blue tit ( Cyanistes caeruleus ) nests across three breeding seasons at Wytham Woods, UK. While our pre-registered analyses found that individual females built very similar nests across years, there was no evidence in follow-up ( post hoc ) analyses that their nest size correlated to that of their genetic mother or, in a cross-fostering experiment, to the nest where they were reared. In further pre-registered analyses, spatial environmental variability explained nest size variability at relatively broad spatial scales, and especially strongly at the scale of individual nest boxes. Our study indicates that nest structure is a characteristic of individuals, but is not strongly heritable, indicating that it will not respond rapidly to selection. Explaining the within-individual and within-location repeatability we observed requires further study.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Camila D. Ritter ◽  
Søren Faurby ◽  
Dominic J. Bennett ◽  
Luciano N. Naka ◽  
Hans ter Steege ◽  
...  

AbstractMost knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, litter and insects from four localities on a west-to-east transect across Amazonia. We quantified richness as Operational Taxonomic Units (OTUs) in those samples using three molecular markers. We then compared OTU richness with species richness of two relatively well-studied organism groups in Amazonia: trees and birds. We find that OTU richness shows a declining west-to-east diversity gradient that is in agreement with the species richness patterns documented here and previously for birds and trees. These results suggest that most taxonomic groups respond to the same overall diversity gradients at large spatial scales. However, our results show a different pattern of richness in relation to habitat types, suggesting that the idiosyncrasies of each taxonomic group and peculiarities of the local environment frequently override large-scale diversity gradients. Our findings caution against using the diversity distribution of one taxonomic group as an indication of patterns of richness across all groups.


The Auk ◽  
2006 ◽  
Vol 123 (4) ◽  
pp. 1013-1021 ◽  
Author(s):  
Gustavo Tomás ◽  
Santiago Merino ◽  
Juan Moreno ◽  
Juan J. Sanz ◽  
Judith Morales ◽  
...  

Abstract We explored two hypotheses that may explain intraspecific variability in nest size. The “thermoregulatory” hypothesis states that species adjust nest size to maintain egg temperature and minimize temperature fluctuations in the nest. Recently, the suggestion has been made that nest size may reflect the health status or phenotypic quality of the builder, potentially making it a sexually selected trait (“sexual selection” hypothesis). For two years, we weighed nests of Blue Tit (Cyanistes caeruleus) at initiation of reproduction in a nest-box breeding population in central Spain. We recorded laying date, clutch size, incubation period, and hatching success. We measured and took blood samples of adult females when nestlings reached three days of age. General regression models controlling for potential variables that could affect nest weight revealed that prevalence of Trypanosoma avium and immunoglobulin levels in females were significantly related to nest weight in only one of the study years. Females not infected with Trypanosoma avium built heavier nests than infected ones, whereas female immunoglobulin levels were negatively associated with nest weight. Hatching success and duration of the incubation period were not related to nest weight in either year. Thus, our results do not support the thermoregulatory hypothesis and show that certain measures of female health are related to nest-building effort in some years, probably depending on environmental conditions. Peso del Nido y Estado de Salud de la Hembra en el Cyanistes caeruleus


2011 ◽  
Vol 82 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Joaquín Ortego ◽  
Vicente García-Navas ◽  
Esperanza S. Ferrer ◽  
Juan José Sanz

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 141
Author(s):  
Firoza Akhter ◽  
Maurizio Mazzoleni ◽  
Luigia Brandimarte

In this study, we explore the long-term trends of floodplain population dynamics at different spatial scales in the contiguous United States (U.S.). We exploit different types of datasets from 1790–2010—i.e., decadal spatial distribution for the population density in the US, global floodplains dataset, large-scale data of flood occurrence and damage, and structural and nonstructural flood protection measures for the US. At the national level, we found that the population initially settled down within the floodplains and then spread across its territory over time. At the state level, we observed that flood damages and national protection measures might have contributed to a learning effect, which in turn, shaped the floodplain population dynamics over time. Finally, at the county level, other socio-economic factors such as local flood insurances, economic activities, and socio-political context may predominantly influence the dynamics. Our study shows that different influencing factors affect floodplain population dynamics at different spatial scales. These facts are crucial for a reliable development and implementation of flood risk management planning.


2021 ◽  
Author(s):  
Marion Germain ◽  
Daniel Kneeshaw ◽  
Louis De Grandpré ◽  
Mélanie Desrochers ◽  
Patrick M. A. James ◽  
...  

Abstract Context Although the spatiotemporal dynamics of spruce budworm outbreaks have been intensively studied, forecasting outbreaks remains challenging. During outbreaks, budworm-linked warblers (Tennessee, Cape May, and bay-breasted warbler) show a strong positive response to increases in spruce budworm, but little is known about the relative timing of these responses. Objectives We hypothesized that these warblers could be used as sentinels of future defoliation of budworm host trees. We examined the timing and magnitude of the relationships between defoliation by spruce budworm and changes in the probability of presence of warblers to determine whether they responded to budworm infestation before local defoliation being observed by standard detection methods. Methods We modelled this relationship using large-scale point count surveys of songbirds and maps of cumulative time-lagged defoliation over multiple spatial scales (2–30 km radius around sampling points) in Quebec, Canada. Results All three warbler species responded positively to defoliation at each spatial scale considered, but the timing of their response differed. Maximum probability of presence of Tennessee and Cape May warbler coincided with observations of local defoliation, or provided a one year warning, making them of little use to guide early interventions. In contrast, the probability of presence of bay-breasted warbler consistently increased 3–4 years before defoliation was detectable. Conclusions Early detection is a critical step in the management of spruce budworm outbreaks and rapid increases in the probability of presence of bay-breasted warbler could be used to identify future epicenters and target ground-based local sampling of spruce budworm.


2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Di Iorio ◽  
Manon Audax ◽  
Julie Deter ◽  
Florian Holon ◽  
Julie Lossent ◽  
...  

AbstractMonitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


2014 ◽  
Vol 71 (7) ◽  
pp. 1717-1727 ◽  
Author(s):  
A. Jason Phillips ◽  
Lorenzo Ciannelli ◽  
Richard D. Brodeur ◽  
William G. Pearcy ◽  
John Childers

Abstract This study investigated the spatial distribution of juvenile North Pacific albacore (Thunnus alalunga) in relation to local environmental variability [i.e. sea surface temperature (SST)], and two large-scale indices of climate variability, [the Pacific Decadal Oscillation (PDO) and the Multivariate El Niño/Southern Oscillation Index (MEI)]. Changes in local and climate variables were correlated with 48 years of albacore troll catch per unit effort (CPUE) in 1° latitude/longitude cells, using threshold Generalized Additive Mixed Models (tGAMMs). Model terms were included to account for non-stationary and spatially variable effects of the intervening covariates on albacore CPUE. Results indicate that SST had a positive and spatially variable effect on albacore CPUE, with increasingly positive effects to the North, while PDO had an overall negative effect. Although albacore CPUE increased with SST both before and after a threshold year of 1986, such effect geographically shifted north after 1986. This is the first study to demonstrate the non-stationary spatial dynamics of albacore tuna, linked with a major shift of the North Pacific. Results imply that if ocean temperatures continue to increase, US west coast fisher communities reliant on commercial albacore fisheries are likely to be negatively affected in the southern areas but positively affected in the northern areas, where current albacore landings are highest.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


Sign in / Sign up

Export Citation Format

Share Document