scholarly journals Agarwood wound locations provide insight into the association between fungal diversity and volatile compounds in Aquilaria sinensis

2019 ◽  
Vol 6 (7) ◽  
pp. 190211 ◽  
Author(s):  
Juan Liu ◽  
Xiang Zhang ◽  
Jian Yang ◽  
Junhui Zhou ◽  
Yuan Yuan ◽  
...  

The aim of the present study was to investigate the effect of wound location on the fungal communities and volatile distribution of agarwood in Aquilaria sinensis . Two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry revealed 60 compounds from the NIST library, including 25 sesquiterpenes, seven monoterpenes, two diterpenes, nine aromatics, nine alkanes and eight others. Of five agarwood types, Types IV and II contained the greatest number and concentration of sesquiterpenes, respectively. The fungal communities of the agarwood were dominated by the phylum Ascomycota and were significantly affected by the type of wound tissue. Community richness indices (observed species, Chao1, PD whole tree, ACE indices) indicated that Types I and IV harboured the most and least species-rich fungal communities, and the fungal communities of Types V, I, III and IV/II were dominated by Lasiodiplodia , Hydnellum , Phaeoisaria and Ophiocordyceps species, respectively. Correlations between fungal species and agarwood components revealed that the chemical properties of A. sinensis were associated with fungal diversity. More specifically, the dominant fungal genera of Types V, I and III ( Lasiodiplodia , Hydnellum and Phaeoisaria , respectively) were strongly correlated with specific terpenoid compounds. The finding that wound location affects the fungal communities and volatile distribution of agarwood provides insight into the formation of distinct agarwood types.

Author(s):  
Sakeenah Adenan ◽  
Jane Oja ◽  
Talaat Abdel-Fattah ◽  
Juha Alatalo

Given the vast expanse of Qatar’s dryland ecosystems, agricultural productivity and soil stability is highly dependent on the diversity of soil microbiota. The soil environment is a heterogeneous habitat shaped by various components like chemical (organic matter, salinity and nutrients) and biological (fungal diversity and vegetation) properties that form multitudes of different microhabitats. Soil microbial diversity changes along environmental gradients. It is hypothesized that a “stable” microhabitat is one that is inhabited by a large diversity of established microorganisms that are best adapted to the niche. Microorganisms like fungi serve as the underlying biological drivers for biochemical processes within the soil. The key objective of this study is to evaluate the fungal diversity and abundance present within the Qatari soil using molecular-based tools and evaluate potential relationships between the identified fungal communities with chemical properties of the habitat. We found that the composition of fungi and AMF varied between different habitats around Qatar. Despite the lack of significant differences in the measured soil chemical parameters between sampled sites, it is evident that AMF species are more abundant than compared to that of other fungal species in most of the study sites; thus, suggesting that other factors like land use may also be an essential component explaining the variation in fungal communities.


2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Francesca De Filippis ◽  
Manolo Laiola ◽  
Giuseppe Blaiotta ◽  
Danilo Ercolini

ABSTRACT Target-gene amplicon sequencing is the most exploited high-throughput sequencing application in microbial ecology. The targets are taxonomically relevant genes, with 16S rRNA being the gold standard for bacteria. As for fungi, the most commonly used target is the internal transcribed spacer (ITS). However, the uneven ITS length among species may promote preferential amplification and sequencing and incorrect estimation of their abundance. Therefore, the use of different targets is desirable. We evaluated the use of three different target amplicons for the characterization of fungal diversity. After an in silico primer evaluation, we compared three amplicons (the ITS1-ITS2 region [ITS1-2], 18S ribosomal small subunit RNA, and the D1/D2 domain of the 26S ribosomal large subunit RNA), using biological samples and a mock community of common fungal species. All three targets allowed for accurate identification of the species present. Nevertheless, high heterogeneity in ITS1-2 length was found, and this caused an overestimation of the abundance of species with a shorter ITS, while both 18S and 26S amplicons allowed for more reliable quantification. We demonstrated that ITS1-2 amplicon sequencing, although widely used, may lead to an incorrect evaluation of fungal communities, and efforts should be made to promote the use of different targets in sequencing-based microbial ecology studies. IMPORTANCE Amplicon-sequencing approaches for fungi may rely on different targets affecting the diversity and abundance of the fungal species. An increasing number of studies will address fungal diversity by high-throughput amplicon sequencing. The description of the communities must be accurate and reliable in order to draw useful insights and to address both ecological and biological questions. By analyzing a mock community and several biological samples, we demonstrate that using different amplicon targets may change the results of fungal microbiota analysis, and we highlight how a careful choice of the target is fundamental for a thorough description of the fungal communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lorenzo Pecoraro ◽  
Hanne N. Rasmussen ◽  
Sofia I. F. Gomes ◽  
Xiao Wang ◽  
Vincent S. F. T. Merckx ◽  
...  

AbstractEpiphytic orchids exhibit varying degrees of phorophyte tree specificity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea uniflora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specific association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially influencing the relationship between orchids and trees. Difference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could influence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confirmed the presence of significantly different fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is influenced by the fungal communities of the host tree bark.


2021 ◽  
Author(s):  
Likulunga Emmanuel Likulunga ◽  
Carmen Alicia Rivera P&eacuterez ◽  
Dominik Schneider ◽  
Rolf Daniel ◽  
Andrea Polle

Soil fungi, especially the functional guilds of saprotrophic and mycorrhizal fungi, play a central role in ecosystem processes by degrading litter, mining for mineral nutrients and linking above- and belowground nutrient fluxes. Fungal community structures are influenced by abiotic habitat filters and management decisions such as tree species selection. Yet, the implications of the enrichment of temperate forests consisting of tree species in their natural range with non-native tree species on soil fungal diversity and their functional groups are unknown. Here, we studied fungal communities in 40 plots located in two regions differing in site conditions (nutrient content and soil moisture) in forests composed of European beech, Norway spruce and Douglas-fir (non-native) and mixtures of beech with either spruce or Douglas-fir. We hypothesized that fungal community structures are driven by soil resources and tree species composition, generally resulting in higher fungal diversity in mixed than in mono-specific forests. We further hypothesized that Douglas-fir has a negative effect on ectomycorrhizal fungal species richness compared to native species, whereas saprotrophic fungal richness is unaffected. We found strong separation of fungal communities between nutrient-rich and nutrient-poor sites and taxonomic divergence between beech and conifer fungal communities and an intermediate pattern in mixed forests. Mycorrhizal species richness did not vary with forest type, but the relative abundance of mycorrhizal species was lower in Douglas-fir and in mixed beech-Douglas-fir forests than in spruce or beech-spruce mixture. Conifer forests contained higher relative abundances of saprotrophic fungi than mono-specific beech forests. Among 16 abundant fungal orders in soil, two containing saprotrophic fungi (Tremellales, Hymenochaetales) were enriched in conifer forests, regardless of site conditions and tree species mixture. The other fungal orders, including those dominated by mycorrhizal fungi (Russulales, Boletales, Atheliales, Cantharellales) showed variable patterns depending on site conditions and tree species. In conclusion, Douglas-fir mono-specific or mixed forests show no loss of fungal species richness, but a shift in functional composition towards saprotrophic fungi.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Fukasawa ◽  
Kimiyo Matsukura

AbstractThe biodiversity–ecosystem function relationship is a central topic in ecology. Fungi are the dominant decomposers of organic plant material in terrestrial ecosystems and display tremendous species diversity. However, little is known about the fungal diversity–decomposition relationship. We evaluated fungal community assemblies and substrate quality in different stages of wood decay to assess the relationships between fungal species richness and weight loss of wood substrate under laboratory conditions. Wood-inhabiting fungal communities in the early and late stages of pine log decomposition were used as a model. Colonisation with certain species prior to inoculation with other species resulted in four-fold differences in fungal species richness and up to tenfold differences in the rate of wood substrate decomposition in both early- and late-decaying fungal communities. Differences in wood substrate quality had a significant impact on species richness and weight loss of wood and the relationships between the two, which were negative or neutral. Late communities showed significantly negative species richness–decay relationships in wood at all decay stages, whereas negative relationships in early communities were significant only in the intermediate decay stage. Our results suggest that changes in fungal communities and wood quality during wood decomposition affect the fungal diversity–decomposition relationship.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 784
Author(s):  
Chao Wang ◽  
Lin Sun ◽  
Haiwen Xu ◽  
Na Na ◽  
Guomei Yin ◽  
...  

Whole-plant corn silages on family farms were sampled in Erdos (S1), Baotou (S2), Ulanqab (S3), and Hohhot (S4) in North China, after 300 d of ensiling. The microbial communities, metabolites, and aerobic stability were assessed. Lactobacillusbuchneri, Acinetobacter johnsonii, and unclassified Novosphingobium were present at greater abundances than others in S2 with greater bacterial diversity and metabolites. Lactobacillus buchneri, Lactobacillus parafarraginis, Lactobacillus kefiri, and unclassified Lactobacillus accounted for 84.5%, and 88.2%, and 98.3% of bacteria in S1, S3, and S4, respectively. The aerobic stability and fungal diversity were greater in S1 and S4 with greater abundances of unclassified Kazachstania, Kazachstania bulderi, Candida xylopsoci, unclassified Cladosporium, Rhizopus microspores, and Candida glabrata than other fungi. The abundances of unclassified Kazachstania in S2 and K. bulderi in S3 were 96.2% and 93.6%, respectively. The main bacterial species in S2 were L. buchneri, A. johnsonii, and unclassified Novosphingobium; Lactobacillus sp. dominated bacterial communities in S1, S3, and S4. The main fungal species in S1 and S4 were unclassified Kazachstania, K. bulderi, C. xylopsoci, unclassified Cladosporium, R. microspores, and C. glabrata; Kazachstania sp. dominated fungal communities in S2 and S3. The high bacterial diversity aided the accumulation of metabolites, and the broad fungal diversity improved the aerobic stability.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Iván Franco-Manchón ◽  
Kauko Salo ◽  
Juan Oria-de-Rueda ◽  
José Bonet ◽  
Pablo Martín-Pinto

Natural forests and plantations of Pinus are ecologically and economically important worldwide, producing an array of goods and services, including the provision of non-wood forest products. Pinus species play an important role in Mediterranean and boreal forests. Although Pinus species seem to show an ecological adaptation to recurrent wildfires, a new era of mega fires is predicted, owing to climate changes associated with global warming. As a consequence, fungal communities, which are key players in forest ecosystems, could be strongly affected by these wildfires. The aim of this study was to observe the fungal community dynamics, and particularly the edible fungi, in maritime (Pinus pinaster Ait.), austrian pine (Pinus nigra J.F. Arnold), and scots pine (Pinus sylvestris L.) forests growing under wet Mediterranean, dry Mediterranean, and boreal climatic conditions, respectively, by comparing the mushrooms produced in severely burned Pinus forests in each area. Sporocarps were collected during the main sampling campaigns in non-burned plots, and in burned plots one year and five years after fire. A total of 182 taxa, belonging to 81 genera, were collected from the sampled plots, indicating a high level of fungal diversity in these pine forests, independent of the climatic conditions. The composition of the fungal communities was strongly affected by wildfire. Mycorrhizal taxa were impacted more severely by wildfire than the saprotrophic taxa, particularly in boreal forests—no mycorrhizal taxa were observed in the year following fire in boreal forests. Based on our observations, it seems that fungal communities of boreal P. sylvestris forests are not as adapted to high-intensity fires as the Mediterranean fungal communities of P. nigra and P. pinaster forests. This will have an impact on reducing fungal diversity and potential incomes in rural economically depressed areas that depend on income from foraged edible fungi, one of the most important non-wood forest products.


2017 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Jeffrey J. Rosentreter ◽  
John Malamakal ◽  
Kelli Barnes ◽  
Matt Alexander

AbstractResidue analysis has rapidly become one of the most useful techniques for determining an artifact function and revealing insight into paleodiets. The success of analytical residue analysis often lies with the first preparatory step, where the residue is extracted from the object. Detection of a residue requires effective solvation of the material, and there is a large range of potential solvents. One purpose of this study is to determine the efficiency of various solvents for the extraction of fatty acids from charcoal, a material that is ubiquitous, easily identified, remarkably stable in the archaeological record but, most importantly for this research, retains fats extremely well. This investigation examines the removal efficiency of model fatty acids from carbonized wood samples. The strong affinity of lipids to charcoal makes carbonized wood ideal for retaining them, but also makes their extraction extremely challenging and thus an ideal benchmark for solvent extraction characterization. Several solvents (benzene, chloroform, hexane, methanol and water) are used to determine the quantitative extraction efficiency of tripalmitin. While benzene and chloroform perform best for some wood types, neither solvent is better for all carbonized wood. Correlations between the chemical properties of the solvents and the effectiveness of the extraction provide guidance for solvents. Findings indicate solvent characteristics including dipole moment, dielectric constant, hydrogen bonding, and molecular weight all play an important role in extraction of fat from a charcoal matrix. Results presented should provide guidelines to allow for more effective residue extration and more accurate lipid analysis.


Sign in / Sign up

Export Citation Format

Share Document