scholarly journals Evolution of transgenerational immunity in invertebrates

2016 ◽  
Vol 283 (1839) ◽  
pp. 20161136 ◽  
Author(s):  
R. Pigeault ◽  
R. Garnier ◽  
A. Rivero ◽  
S. Gandon

Over a decade ago, the discovery of transgenerational immunity in invertebrates shifted existing paradigms on the lack of sophistication of their immune system. Nonetheless, the prevalence of this trait and the ecological factors driving its evolution in invertebrates remain poorly understood. Here, we develop a theoretical host–parasite model and predict that long lifespan and low dispersal should promote the evolution of transgenerational immunity. We also predict that in species that produce both philopatric and dispersing individuals, it may pay to have a plastic allocation strategy with a higher transgenerational immunity investment in philopatric offspring because they are more likely to encounter locally adapted pathogens. We review all experimental studies published to date, comprising 21 invertebrate species in nine different orders, and we show that, as expected, longevity and dispersal correlate with the transfer of immunity to offspring. The validity of our prediction regarding the plasticity of investment in transgenerational immunity remains to be tested in invertebrates, but also in vertebrate species. We discuss the implications of our work for the study of the evolution of immunity, and we suggest further avenues of research to expand our knowledge of the impact of transgenerational immune protection in host–parasite interactions.

Parasitology ◽  
1989 ◽  
Vol 99 (S1) ◽  
pp. S59-S79 ◽  
Author(s):  
R. M. Anderson ◽  
R. M. May ◽  
S. Gupta

SUMMARYThe paper examines non-linear dynamical phenomena in host—parasite interactions by reference to a series of different problems ranging from the impact on transmission of control measures based on vaccination and chemotherapy, to the effects of immunological responses targeted at different stages in a parasite's life-cycle. Throughout, simple mathematical models are employed to aid in interpretation. Analyses reveal that the influence of a defined control measure on the prevalence or intensity of infection, whether vaccination or drug treatment, is non-linearly related to the magnitude of control effort (as defined by the proportion of individuals vaccinated or treated with a drug). Consideration of the relative merits of gametocyte and sporozoite vaccines against malarial parasites suggests that very high levels of cohort immunization will be required to block transmission in endemic areas, with the former type of vaccine being more effective in reducing transmission for a defined level of coverage and the latter being better with respect to a reduction in morbidity. The inclusion of genetic elements in analyses of the transmission of helminth parasites reveals complex non-linear patterns of change in the abundance of different parasite genotypes under selection pressures imposed by either the host immunological defences or the application of chemotherapeutic agents. When resistance genes are present in parasite populations, the degree to which abundance can be suppressed by chemotherapy depends critically on the frequency and intensity of application, with intermediate values of the former being optimal. A more detailed consideration of the impact of immunological defences on parasite population growth within an individual host, by reference to the erythrocytic cycle of malaria, suggests that the effectiveness of a given immunological response is inversely related to the life-expectancy of the target stage in the parasite's developmental cycle.


2018 ◽  
Author(s):  
◽  
Giacomo Zilio

Parasite and host impose strong selection on each other. The first causes damages and mortality to the host, while the second responds by reducing the detrimental effects and the intensity and/or success of infection. The resulting co-evolutionary dynamics are profoundly affected by the ecological conditions, for these may influence many aspects of host-parasite interactions including life history evolution, virulence and transmission. It is therefore essential to study and incorporate environmental variation in the field of parasitology to gain an exhaustive understanding of how host and parasite evolve. In this thesis, a single generation and an evolutionary experimental approach were used to investigate the impact of the ecological and epidemiological conditions on several aspects of host-parasite interactions, with the main focus on parasite transmission strategies. Firstly, it was examined the effect of the availability of resources for the host, timing of infection, and co-infection on the virulence and transmission success of two parasites with conflicting transmission strategy. Next, it was tested how the environment influenced the trade-off between vertical and horizontal transmission in a parasite with a mixed mode of transmission and it was assessed the genetic contribution of the host to its transmission mode. Whether the vertical and horizontal component of this parasite and the associated virulence responded to restriction opportunities, represented by different availability of resources over several generations, was investigated with an evolutionary experiment. Finally, the presence of a plastically parasite-induced response on the recombination rate of the host as a potential cross-generational defence mechanism was explored. The experiments cover many key aspects of host-parasite interactions and emphasize the role of the ecological conditions on shaping these relationships. The results and their implications are discussed in detail throughout the thesis. Overall, this work highlights the dependence of crucial aspects of host-parasite interactions from the epidemiological and ecological conditions. Disentangling the various forces surrounding these interactions may help us to acquire a better knowledge of how a changing environment may drive the evolution of both host and parasite.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Sandra Gomez ◽  
Laura Adalid-Peralta ◽  
Hector Palafox-Fonseca ◽  
Vito Adrian Cantu-Robles ◽  
Xavier Soberón ◽  
...  

Abstract Excretory/Secretory (ES) proteins play an important role in the host-parasite interactions. Experimental identification of ES proteins is time-consuming and expensive. Alternative bioinformatics approaches are cost-effective and can be used to prioritize the experimental analysis of therapeutic targets for parasitic diseases. Here we predicted and functionally annotated the ES proteins in T. solium genome using an integration of bioinformatics tools. Additionally, we developed a novel measurement to evaluate the potential antigenicity of T. solium secretome using sequence length and number of antigenic regions of ES proteins. This measurement was formalized as the Abundance of Antigenic Regions (AAR) value. AAR value for secretome showed a similar value to that obtained for a set of experimentally determined antigenic proteins and was different to the calculated value for the non-ES proteins of T. solium genome. Furthermore, we calculated the AAR values for known helminth secretomes and they were similar to that obtained for T. solium. The results reveal the utility of AAR value as a novel genomic measurement to evaluate the potential antigenicity of secretomes. This comprehensive analysis of T. solium secretome provides functional information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnosis and immunological interest.


2020 ◽  
Vol 7 (9) ◽  
pp. 200172
Author(s):  
Numair Masud ◽  
Laura Hayes ◽  
Davide Crivelli ◽  
Stephen Grigg ◽  
Jo Cable

Anthropogenic noise is a pervasive global pollutant that has been detected in every major habitat on the planet. Detrimental impacts of noise pollution on physiology, immunology and behaviour have been shown in terrestrial vertebrates and invertebrates. Equivalent research on aquatic organisms has until recently been stunted by the misnomer of a silent underwater world. In fish, however, noise pollution can lead to stress, hearing loss, behavioural changes and impacted immunity. But, the functional effects of this impacted immunity on disease resistance due to noise exposure have remained neglected. Parasites that cause transmissible disease are key drivers of ecosystem biodiversity and a significant factor limiting the sustainable expansion of the animal trade. Therefore, understanding how a pervasive stressor is impacting host–parasite interactions will have far-reaching implications for global animal health. Here, we investigated the impact of acute and chronic noise on vertebrate susceptibility to parasitic infections, using a model host–parasite system (guppy– Gyrodactylus turnbulli ). Hosts experiencing acute noise suffered significantly increased parasite burden compared with those in no noise treatments. By contrast, fish experiencing chronic noise had the lowest parasite burden. However, these hosts died significantly earlier compared with those exposed to acute and no noise treatments. By revealing the detrimental impacts of acute and chronic noise on host–parasite interactions, we add to the growing body of evidence demonstrating a link between noise pollution and reduced animal health.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
John J. Dennehy

The outcomes of host-parasite interactions depend on the coevolutionary forces acting upon them, but because every host-parasite relation is enmeshed in a web of biotic and abiotic interactions across a heterogeneous landscape, host-parasite coevolution has proven difficult to study. Simple laboratory phage-bacteria microcosms can ameliorate this difficulty by allowing controlled, well-replicated experiments with a limited number of interactors. Genetic, population, and life history data obtained from these studies permit a closer examination of the fundamental correlates of host-parasite coevolution. In this paper, I describe the results of phage-bacteria coevolutionary studies and their implications for the study of host-parasite coevolution. Recent experimental studies have confirmed phage-host coevolutionary dynamics in the laboratory and have shown that coevolution can increase parasite virulence, specialization, adaptation, and diversity. Genetically, coevolution frequently proceeds in a manner best described by the Gene for Gene model, typified by arms race dynamics, but certain contexts can result in Red Queen dynamics according to the Matching Alleles model. Although some features appear to apply only to phage-bacteria systems, other results are broadly generalizable and apply to all instances of antagonistic coevolution. With laboratory host-parasite coevolutionary studies, we can better understand the perplexing array of interactions that characterize organismal diversity in the wild.


2018 ◽  
Author(s):  
L. Garcia-Longoria ◽  
A. Marzal ◽  
F. de Lope ◽  
L. Z. Garamszegi

ABSTRACTParasites are a selective force that shape host community structure and dynamics, but host communities can also influence parasitism. Understanding the dual nature from host-parasite interactions can be facilitated by quantifying the variation in parasite prevalence (i.e. the proportion of infected host individuals in a population) among host species and then comparing that variation to other ecological factors that are known to also shape host communities. Avian haemosporidian parasites (e.g. Plasmodium and Haemoproteus) are abundant and widespread representing an excellent model for the study of host-parasite interactions. Several geographic and environmental factors have been suggested to determine prevalence of avian haemosporidians in bird communities. However, much remains to be known regarding whether host and parasite traits, represented by phylogenetic distances among species and degree of specialization in host-parasite relationships, can influence parasite prevalence. The aims of this study were to analyze factors affecting prevalence in a bird community and to test whether the degree of parasite specialization on their hosts is determined by host traits. Our statistical analyses suggest that prevalence is mainly determined by the interaction between host species and parasite lineages where tolerance and/or susceptibility to parasites plays an essential role. Additionally, we found that although some of the parasite lineages infected a low number of bird species, the species they infected were distantly related and therefore the parasites themselves should not be considered typical host specialists. Prevalence was higher for generalist than for specialist parasites in some, but not all, host species. These results suggest that prevalence mainly results from the interaction between host immune defences and parasite exploitation strategies wherein the result of an association between particular parasite lineages and particular host species is idiosyncratic.


2006 ◽  
Vol 84 (9) ◽  
pp. 1315-1321 ◽  
Author(s):  
L.K. Belden

In freshwater systems, environmental changes, such as eutrophication, are occurring that could impact the outcome of host–parasite interactions. Using tadpole infection with trematode cercariae as a host–parasite system, this study examined (i) growth, development, and maintenance of trematode ( Echinostoma trivolvis (Cort, 1914)) infection levels in second intermediate host larval wood frogs ( Rana sylvatica LeConte, 1825) and (ii) post-infection impacts of eutrophication on R. sylvatica tadpoles infected to varying degrees with E. trivolvis cercariae. Results from the first experiment suggest no impact of infection with 50 cercariae on R. sylvatica growth and development compared with uninfected controls. Results from the second experiment, investigating the impact of eutrophication on infected tadpoles, showed that survival to metamorphosis of the individuals in the highest infection treatment (80 cercariae) was reduced regardless of eutrophication treatment. However, for individuals surviving infection with 80 cercariae and for individuals infected with only 20 cercariae, no impact of infection on mass at metamorphosis was documented, although individuals were larger at metamorphosis in the eutrophic tanks. These data demonstrate that infection with E. trivolvis can impact R. sylvatica survivorship, at least above some threshold infection level, and that eutrophication may have minimal impacts on tadpole hosts once infection has occurred.


2009 ◽  
Vol 5 (6) ◽  
pp. 721-722
Author(s):  
Jay D. Evans

A conference exploring ‘The impact of the environment on innate immunity: the threat of diseases’ was held on 4–9 May 2009 in Obergurgl, Austria, thanks to the support from the European Science Foundation, Innsbruck University and the Austrian Science Foundation. The goals of the conference were to explore how the outcomes of host–parasite interactions depend on variation across individuals, their parasites and the environment in which they both find themselves. Central themes were the inherent costs of mounting an immune response, the ability of some organisms to pre-empt infection by ‘priming’ their immune systems, the fact that parasites learn to evade immune responses over time and the use of theory to predict when diseases will get out of hand. Many of the systems presented had clear impacts on human health, agriculture or the maintenance of complex ecosystems. There was common ground throughout in developing methodologies and embracing what one of the organizers termed the ‘interactome’ between hosts and those which would exploit them.


Parasitology ◽  
2011 ◽  
Vol 138 (8) ◽  
pp. 1022-1028 ◽  
Author(s):  
HIDEYUKI DOI ◽  
NATALIA I. YURLOVA

SUMMARYIt is suspected that host-parasite interactions are influenced by climatic oscillations such as the North Atlantic Oscillation (NAO). However, the effects of climatic oscillations on host-parasite interactions have never been investigated. A long-term (1982–1999) dataset of the host snail Lymnaea stagnalis and trematode metacercariae infection has been collected for Lake Chany in Western Siberia. Using this dataset, we estimated the impact of the NAO on the population dynamics of hosts and parasites as well as their interactions. The results of general linear models showed that the abundance of dominant parasite species and the total parasite abundance significantly increased with NAO, with the exception of Moliniella anceps. Other climatic and biological factors were relatively weak to explain the abundance. There was no significant relationship between NAO and the population density of host snails. The prevalence of infection was related to the total abundance of parasites, but not to the NAO. Thus, the responses to the NAO differed between the host and parasites, indicating mismatching in host-parasite interactions. Therefore, climatic oscillations, such as the NAO, influence common parasitism.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sarah R. Hoy ◽  
Leah M. Vucetich ◽  
Rolf O. Peterson ◽  
John A. Vucetich

Climate change is expected to modify host-parasite interactions which is concerning because parasites are involved in most food-web links, and parasites have important influences on the structure, productivity and stability of communities and ecosystems. However, the impact of climate change on host–parasite interactions and any cascading effects on other ecosystem processes has received relatively little empirical attention. We assessed host-parasite dynamics for moose (Alces alces) and winter ticks (Dermacentor albipictus) in Isle Royale National Park over a 19-year period. Specifically, we monitored annual tick burdens for moose (estimated from hair loss) and assessed how it covaried with several aspects of seasonal climate, and non-climatic factors, such as moose density, predation on hosts by wolves (Canis lupus) and wolf abundance. Summer temperatures explained half the interannual variance in tick burden with tick burden being greater following hotter summers, presumably because warmer temperatures accelerate the development of tick eggs and increase egg survival. That finding is consistent with the general expectation that warmer temperatures may promote higher parasite burdens. However, summer temperatures are warming less rapidly than other seasons across most regions of North America. Therefore, tick burdens seem to be primarily associated with an aspect of climate that is currently exhibiting a lower rate of change. Tick burdens were also positively correlated with predation rate, which could be due to moose exhibiting risk-sensitive habitat selection (in years when predation risk is high) in such a manner as to increases the encounter rate with questing tick larvae in autumn. However, that positive correlation could also arise if high parasite burdens make moose more vulnerable to predators or because of some other density-dependent process (given that predation rate and moose density are highly correlated). Overall, these results provide valuable insights about interrelationships among climate, parasites, host/prey, and predators.


Sign in / Sign up

Export Citation Format

Share Document