scholarly journals Circumventing surface tension: tadpoles suck bubbles to breathe air

2020 ◽  
Vol 287 (1921) ◽  
pp. 20192704 ◽  
Author(s):  
Kurt Schwenk ◽  
Jackson R. Phillips

The surface tension of water provides a thin, elastic membrane upon which many tiny animals are adapted to live and move. We show that it may be equally important to the minute animals living beneath it by examining air-breathing mechanics in five species (three families) of anuran (frog) tadpoles. Air-breathing is essential for survival and development in most tadpoles, yet we found that all tadpoles at small body sizes were unable to break through the water's surface to access air. Nevertheless, by 3 days post-hatch and only 3 mm body length, all began to breathe air and fill the lungs. High-speed macrovideography revealed that surface tension was circumvented by a novel behaviour we call ‘bubble-sucking’: mouth attachment to the water's undersurface, the surface drawn into the mouth by suction, a bubble ‘pinched off’ within the mouth, then compressed and forced into the lungs. Growing tadpoles transitioned to air-breathing via typical surface breaching. Salamander larvae and pulmonate snails were also discovered to ‘bubble-suck’, and two insects used other means of circumvention, suggesting that surface tension may have a broader impact on animal phenotypes than hitherto appreciated.

PEDIATRICS ◽  
1973 ◽  
Vol 51 (4) ◽  
pp. 655-659
Author(s):  
Robert V. Kotas

Intrauterine inoculation of Staphylococcus aureus into 24-day rabbit fetuses resulted in changes in lung maturation at 27 days comparable to those seen after glucocorticoid injection. The lungs of infected litters had increased low pressure stability and distensibility with decreased surface tension upon compression, and resembled 29- to 30-day control lungs. Although intrauterine infection is found to be harmful to the fetus, it may have a secondary effect of preparing a fetus for premature air breathing.


2006 ◽  
Vol 66 (1a) ◽  
pp. 85-93 ◽  
Author(s):  
M. I. Hamann

From December 1995 to November 2000, the seasonal maturation of Glypthelmins vitellinophilum Dobbin, 1958, in its definitive host, the frog Lysapsus limellus Cope, 1862, was studied in a subtropical permanent pond in northeastern Argentina. The objectives of this study were: 1) to determine the infrapopulation dynamics of the parasite, analyzing the seasonal maturation cycle throughout the years; and 2) to examine the relationship between the intensity of trematode infection in different developmental stages (recruitment, growth and maturation) and the host's body length. Of a total of 1,400 frogs examined over 60 months (5 years), 38% were found to be infected with G. vitellinophilum, and the intensity of infection was 1-15 trematodes per frog. Specimens of G. vitellinophilum were present in L. limellus throughout the years, but did not show a pronounced seasonal maturation cycle. Possible reasons for these findings are discussed with reference to climatic fluctuations and biotic factors. The infective period of the parasite (stage I) occurred in summer, autumn and spring, coinciding with the time each frog cohort appeared. These infections were found principally in small body sizes (classes 1 and 2) of L. limellus. Juvenile and nongravid specimens of worms (stage II and III) were found in frogs of different body sizes throughout the period of investigation. Gravid specimens of the parasite (stage IV) were generally recorded in autumn, winter and spring, mainly in the bodies of larger frogs. The body length of Trematodes in stages I and IV was significantly and positively correlated with that of the frogs.


2020 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

AbstractAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes) yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.Simple SummaryAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—e.g., small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to gain key molecular insight into insect diversification and empower future research.


2020 ◽  
Vol 164 ◽  
pp. 07029
Author(s):  
Andrey Chemagin

The researches were carry out by stationary and mobile hydroacoustic computerized complexes in the floodplain-riverbed complex of the Irtysh River (Western Siberia, Russian Federation). It was established that during the migration period during the spring flood, patterns of distribution of fish in the stream are observe due to the size-taxonomic characteristics of the fish population and the physiological capabilities of the organism of fish. With an increase in the flow velocity characteristic from the near bank part of the river to its midstream, the proportion of cyprinids in the watercourse decreases, and the proportion of fish with body sizes> 15 cm increases. The number of fish smaller at high-speed sections of the river increases with an increase in water temperature, which in turn indicates the increasing physiological capabilities of representatives of Cyprinidae family. Absolute numerical dominance of migratory fish and the largest proportion of cyprinids were observed in the low velocity section of the river, located closer to the shore. The indicator of the proportion of cyprinids have a direct strong correlative relationship with the temperature factor (0.70-0.73, P<0.05).


2016 ◽  
Vol 283 (1825) ◽  
pp. 20152772 ◽  
Author(s):  
Eric S. Abelson

Increases in relative encephalization (RE), brain size after controlling for body size, comes at a great metabolic cost and is correlated with a host of cognitive traits, from the ability to count objects to higher rates of innovation. Despite many studies examining the implications and trade-offs accompanying increased RE, the relationship between mammalian extinction risk and RE is unknown. I examine whether mammals with larger levels of RE are more or less likely to be at risk of endangerment than less-encephalized species. I find that extant species with large levels of encephalization are at greater risk of endangerment, with this effect being strongest in species with small body sizes. These results suggest that RE could be a valuable asset in estimating extinction vulnerability. Additionally, these findings suggest that the cost–benefit trade-off of RE is different in large-bodied species when compared with small-bodied species.


Author(s):  
Milind A. Jog ◽  
Raj M. Manglik

The post-impact spreading and recoil behaviors of droplets of pure liquids (water and ethanol) and aqueous solution of Triton X-100 (a surfactant) on a dry horizontal hydrophilic (glass) substrate are investigated for low Weber numbers. The evolution of drop shape during spreading and recoil are captured using a high-speed (4,000 frames per second) digital video camera. Digital image-processing was used to determine the spread and height of the liquid film on the surface from each frame. Unlike pure liquids, the liquid-gas interfacial tension for surfactant solution is a function of surface age, where surface tension is that of the solvent at zero time and then reaches an equilibrium value with increasing surface age. Furthermore, the equilibrium surface tension is a function of the surfactant concentration, which decreases from that of the solvent at zero concentration to that at the critical micelle concentration (CMC), and remains essentially constant thereafter. The surface tension of aqueous Triton X-100 solution varies from that of pure water to nearly that of ethanol. As such the comparison of transient droplet-impact-spreading-recoil behavior of the three liquids, or their temporal variations of the spread and the flattening factor, provides a basis for understanding the role of dynamic surface tension and surface wettability.


2020 ◽  
Vol 40 (3) ◽  
pp. 325-329
Author(s):  
Joshua T Fields ◽  
Hayden K Mullen ◽  
Clayr M Kroenke ◽  
Kyla A Salomon ◽  
Abby J Craft ◽  
...  

Abstract The spider crab Petramithrax pygmaeus (Bell, 1836), a phyletic dwarf, was used to test predictions regarding reproductive performance in small marine invertebrates. Considering the disproportional increase in brooding costs and the allometry of egg production with increasing body size, it was expected that this minute-size species would produce large broods compared to closely related species that attain much larger body sizes. Fecundity in P. pygmaeus females carrying early and late eggs varied, respectively, between 17 and 172 eggs crab–1 (mean ± SD = 87.97 ± 48.39) and between 13 and 159 eggs crab–1 (55.04 ± 40.29). Females did not experience brood loss during egg development. Egg volume in females carrying early and late eggs varied, respectively, between 0.13 and 0.40 mm3 (0.22 ± 0.07) and between 0.15 and 0.42 mm3 (0.26 ± 0.06 mm3). Reproductive output (RO) varied between 0.91 and 8.73% (3.81 ± 2.17%) of female dry body weight. The RO of P. pygmaeus was lower than that reported for closely related species with larger body sizes. The slope (b = 0.95 ± 0.15) of the line describing the relationship between brood and parental female dry weight was not statistically significant from unity. Overall, our results disagree with the notion that the allometry of gamete production and increased physiological costs with increased brood size explain the association between brooding and small body size in marine invertebrates. Comparative studies on the reproductive investment of brooding species belonging to monophyletic clades with extensive differences in body size are warranted to further our understanding about disparity in egg production in brooding marine invertebrates.


Author(s):  
Kalpak P. Gatne ◽  
Milind A. Jog ◽  
Raj M. Manglik

A study of the normal impact of liquid droplets on a dry horizontal substrate is presented in this paper. The impact dynamics, spreading and recoil behavior are captured using a high-speed digital video camera at 2000 frames per second. A digital image processing software was used to determine the drop spread and height of the liquid on the surface from each frame. To ascertain the effects of liquid viscosity and surface tension, experiments were conducted with four liquids (water, ethanol, propylene glycol and glycerin) that have vastly different fluid properties. Three different Weber numbers (20, 40, and 80) were considered by altering the height from which the drop is released. The high-speed photographs of impact, spreading and recoil are shown and the temporal variations of dimensionless drop spread and height are provided in the paper. The results show that changes in liquid viscosity and surface tension significantly affect the spreading and recoil behavior. For a fixed Weber number, lower surface tension promotes greater spreading and higher viscosity dampens spreading and recoil. Using a simple scale analysis of energy balance, it was found that the maximum spread factor varies as Re1/5 when liquid viscosity is high and viscous effects govern the spreading behavior.


Sign in / Sign up

Export Citation Format

Share Document