scholarly journals Experiments on the value of vascular and visceral factors for the genesis of emotion

1900 ◽  
Vol 66 (424-433) ◽  
pp. 390-403 ◽  

That marked reactions of those portions of the nervous system which regulate the activity of the thoracic and abdominal organs and the skin do contribute characteristically to the phenomena of emotion has long been common knowledge. In descriptions of emotion furnished in recent years by certain leading psychologists these purely physiological processes have been given a place more important than was attributed to them formerly.

2019 ◽  
Vol 25 (26) ◽  
pp. 2892-2905 ◽  
Author(s):  
Sumit Jamwal ◽  
Ashish Mittal ◽  
Puneet Kumar ◽  
Dana M. Alhayani ◽  
Amal Al-Aboudi

Adenosine is a naturally occurring nucleoside and an essential component of the energy production and utilization systems of the body. Adenosine is formed by the degradation of adenosine-triphosphate (ATP) during energy-consuming processes. Adenosine regulates numerous physiological processes through activation of four subtypes of G-protein coupled membrane receptors viz. A1, A2A, A2B and A3. Its physiological importance depends on the affinity of these receptors and the extracellular concentrations reached. ATP acts as a neurotransmitter in both peripheral and central nervous systems. In the peripheral nervous system, ATP is involved in chemical transmission in sensory and autonomic ganglia, whereas in central nervous system, ATP, released from synaptic terminals, induces fast excitatory postsynaptic currents. ATP provides the energetics for all muscle movements, heart beats, nerve signals and chemical reactions inside the body. Adenosine has been traditionally considered an inhibitor of neuronal activity and a regulator of cerebral blood flow. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosinerelated drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. This review will summarize the therapeutic potential and recent SAR and pharmacology of adenosine and its receptor agonists and antagonists.


Vision ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Feipeng Wu ◽  
Yin Zhao ◽  
Hong Zhang

The autonomic nervous system (ANS) confers neural control of the entire body, mainly through the sympathetic and parasympathetic nerves. Several studies have observed that the physiological functions of the eye (pupil size, lens accommodation, ocular circulation, and intraocular pressure regulation) are precisely regulated by the ANS. Almost all parts of the eye have autonomic innervation for the regulation of local homeostasis through synergy and antagonism. With the advent of new research methods, novel anatomical characteristics and numerous physiological processes have been elucidated. Herein, we summarize the anatomical and physiological functions of the ANS in the eye within the context of its intrinsic connections. This review provides novel insights into ocular studies.


Author(s):  
Christopher Ambrogi ◽  
◽  
Madina Ndoye ◽  

The term “Situs ambiguus” describes the configuration when some, but not all thoracic and abdominal organs are abnormally positioned. It is commonly associated with polysplenia, or multiple spleens. 50-100% of situs ambiguus with polysplenia have associated cardiac malformations [1]. We present a 70 year old male who came to our hospital for complete, acute, urinary retention, and was found to have invasive prostate cancer. Incidentally, the liver was positioned on the left side, and the spleen was located on the right side. There were multiple perisplenic nodular formations with peripheral calcifications that had enhancement kinetics similar to those of the spleen, suggesting polysplenia. In low thoracic cuts, the tip of the heart was clearly on the left side. The presence of situs ambiguus with polysplenia in the absence of cardiac abnormalities makes this case a unique presentation of an already rare condition. Clinicians should regularly consider the possibilities of anatomical variation in their medical and surgical practices.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 855-863 ◽  
Author(s):  
C.Q. Doe

The first step in generating cellular diversity in the Drosophila central nervous system is the formation of a segmentally reiterated array of neural precursor cells, called neuroblasts. Subsequently, each neuroblast goes through an invariant cell lineage to generate neurons and/or glia. Using molecular lineage markers, I show that (1) each neuroblast forms at a stereotyped time and position; (2) the neuroblast pattern is indistinguishable between thoracic and abdominal segments; (3) the development of individual neuroblasts can be followed throughout early neurogenesis; (4) gene expression in a neuroblast can be reproducibly modulated during its cell lineage; (5) identified ganglion mother cells form at stereotyped times and positions; and (6) the cell lineage of four well-characterized neurons can be traced back to two identified neuroblasts. These results set the stage for investigating neuroblast specification and the mechanisms controlling neuroblast cell lineages.


2020 ◽  
Vol 4 (1) ◽  
pp. 371-390
Author(s):  
Shawn Gillespie ◽  
Michelle Monje

The nervous system is intimately involved in physiological processes from development and growth to tissue homeostasis and repair throughout the body. It logically follows that the nervous system has the potential to play analogous roles in the context of cancer. Progress toward understanding the crucial role of the nervous system in cancer has accelerated in recent years, but much remains to be learned. Here, we highlight rapidly evolving concepts in this burgeoning research space and consider next steps toward understanding and therapeutically targeting the neural regulation of cancer.


2020 ◽  
Vol 318 (3) ◽  
pp. F531-F543 ◽  
Author(s):  
Marcelo D. Carattino ◽  
Nicolas Montalbetti

Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.


2020 ◽  
Vol 21 (11) ◽  
pp. 4045 ◽  
Author(s):  
Bruno Tilocca ◽  
Luisa Pieroni ◽  
Alessio Soggiu ◽  
Domenico Britti ◽  
Luigi Bonizzi ◽  
...  

Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bi-directional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut–brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS).


1964 ◽  
Vol 48 (1) ◽  
pp. 95-104 ◽  
Author(s):  
H. H. Seliger ◽  
J. B. Buck ◽  
W. G. Fastie ◽  
W. D. McElroy

The in vivo emission spectra of sixteen species of Jamaican fireflies and four species of American fireflies have been measured with a photoelectric recording spectrometer. A simple technique of stimulation with ethyl acetate vapor was found to elicit bright continuous emission over a period of several minutes. Although the luciferin-luciferase cross-reactions were positive in all cases tested, peak intensity wavelengths show distinct species differences, ranging from 5520 to 5820 A. Widely separated emission peaks arise from the thoracic and abdominal organs respectively in the same animal, the click-beetle, Pyrophorus.


2016 ◽  
Vol 29 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Magdalena Polakowska ◽  
Jolanta Orzelska-Gorka ◽  
Sylwia Talarek

AbstractNitric oxide (NO) is a relatively novel messenger that plays a significant role in a wide range of physiological processes. Currently, it is known that, both, lack and excess of NO can cause diseases, thus a lot of substances have been discovered and utilized which can change the concentration of this molecule within the organism. The aim of the present work is to provide an overview of currently used agents modulating the L-arginine:NO:cGMP pathway, as well as to summarize current understanding of their pharmacological profiles. Nowadays, most of these agents are employed particularly in the treatment of cardiovascular diseases. Further studies can hold promise for enhancing the therapeutic equipment for a variety of other impairments, such as osteoporosis, and also in treatments of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document