Conventional and novel processing methods for cellular ceramics

Author(s):  
Paolo Colombo

Cellular ceramics are a class of highly porous materials that covers a wide range of structures, such as foams, honeycombs, interconnected rods, interconnected fibres, interconnected hollow spheres. Recently, there has been a surge of activity in this field, because these innovative materials have started to be used as components in special and advanced engineering applications. These include filtering liquids and particles in gas streams, porous burners, biomedical devices, lightweight load-bearing structures, etc. Improvements in conventional processing methods and the development of innovative fabrication approaches are required because of the increasing specific demands on properties and morphology (cell size, size distribution and interconnection) for these materials, which strictly depend on the application considered. This paper will cover the main fabrication methods for cellular ceramics, focusing primarily on foams, offering some insight into novel fabrication processes and recent developments.

2018 ◽  
Vol 44 ◽  
pp. 00094
Author(s):  
Karol Leluk ◽  
Karolina Sobczyk ◽  
Maciej Borowczak

An investigation on electrospinning of polycaprolactone polymer solution was provided in different process conditions. Although, in all attempts a structure of highly surface-to-mass ratio was achieved, alternation of spinning parameters resulted in products of different geometry. This opens a new way of controlled processing highly porous materials with broad field of application.


2021 ◽  
Vol 899 ◽  
pp. 80-85
Author(s):  
Ekaterina A. Kachalova ◽  
Ivan R. Lednev ◽  
R.S. Kovylin ◽  
L.A. Smirnova

A technique for starch modification by graft polymerization of acrylamide has been developed. The obtained copolymer is soluble in a wide range of pH 2 - 12. The modification of starch made it possible to freely combine it with aqueous acid solutions of chitosan, in order to achieve a synergistic effect of their properties. A porous material based on modified starch and its mixtures with chitosan, which has high sorption characteristics, has been developed. The resulting material is promising as a sorbent of heavy metal ions and packing materials for transportation and storage.


2020 ◽  
Vol 29 (3S) ◽  
pp. 631-637
Author(s):  
Katja Lund ◽  
Rodrigo Ordoñez ◽  
Jens Bo Nielsen ◽  
Dorte Hammershøi

Purpose The aim of this study was to develop a tool to gain insight into the daily experiences of new hearing aid users and to shed light on aspects of aided performance that may not be unveiled through standard questionnaires. Method The tool is developed based on clinical observations, patient experiences, expert involvement, and existing validated hearing rehabilitation questionnaires. Results An online tool for collecting data related to hearing aid use was developed. The tool is based on 453 prefabricated sentences representing experiences within 13 categories related to hearing aid use. Conclusions The tool has the potential to reflect a wide range of individual experiences with hearing aid use, including auditory and nonauditory aspects. These experiences may hold important knowledge for both the patient and the professional in the hearing rehabilitation process.


10.1558/37291 ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 242-263
Author(s):  
Stefano Rastelli ◽  
Kook-Hee Gil

This paper offers a new insight into GenSLA classroom research in light of recent developments in the Minimalist Program (MP). Recent research in GenSLA has shown how generative linguistics and acquisition studies can inform the language classroom, mostly focusing on what linguistic aspects of target properties should be integrated as a part of the classroom input. Based on insights from Chomsky’s ‘three factors for language design’ – which bring together the Faculty of Language, input and general principles of economy and efficient computation (the third factor effect) for language development – we put forward a theoretical rationale for how classroom research can offer a unique environment to test the learnability in L2 through the statistical enhancement of the input to which learners are exposed.


2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


The recycling and reuse of materials and objects were extensive in the past, but have rarely been embedded into models of the economy; even more rarely has any attempt been made to assess the scale of these practices. Recent developments, including the use of large datasets, computational modelling, and high-resolution analytical chemistry, are increasingly offering the means to reconstruct recycling and reuse, and even to approach the thorny matter of quantification. Growing scholarly interest in the topic has also led to an increasing recognition of these practices from those employing more traditional methodological approaches, which are sometimes coupled with innovative archaeological theory. Thanks to these efforts, it has been possible for the first time in this volume to draw together archaeological case studies on the recycling and reuse of a wide range of materials, from papyri and textiles, to amphorae, metals and glass, building materials and statuary. Recycling and reuse occur at a range of site types, and often in contexts which cross-cut material categories, or move from one object category to another. The volume focuses principally on the Roman Imperial and late antique world, over a broad geographical span ranging from Britain to North Africa and the East Mediterranean. Last, but not least, the volume is unique in focusing upon these activities as a part of the status quo, and not just as a response to crisis.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3512
Author(s):  
Reem Shomal ◽  
Babatunde Ogubadejo ◽  
Toyin Shittu ◽  
Eyas Mahmoud ◽  
Wei Du ◽  
...  

Biodiesel is a promising candidate for sustainable and renewable energy and extensive research is being conducted worldwide to optimize its production process. The employed catalyst is an important parameter in biodiesel production. Metal–organic frameworks (MOFs), which are a set of highly porous materials comprising coordinated bonds between metals and organic ligands, have recently been proposed as catalysts. MOFs exhibit high tunability, possess high crystallinity and surface area, and their order can vary from the atomic to the microscale level. However, their catalytic sites are confined inside their porous structure, limiting their accessibility for biodiesel production. Modification of MOF structure by immobilizing enzymes or ionic liquids (ILs) could be a solution to this challenge and can lead to better performance and provide catalytic systems with higher activities. This review compiles the recent advances in catalytic transesterification for biodiesel production using enzymes or ILs. The available literature clearly indicates that MOFs are the most suitable immobilization supports, leading to higher biodiesel production without affecting the catalytic activity while increasing the catalyst stability and reusability in several cycles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1001
Author(s):  
Rui Huang ◽  
David C. Luther ◽  
Xianzhi Zhang ◽  
Aarohi Gupta ◽  
Samantha A. Tufts ◽  
...  

Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with ”small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.


Author(s):  
Hernâni Marques ◽  
Pedro Cruz-Vicente ◽  
Tiago Rosado ◽  
Mário Barroso ◽  
Luís A. Passarinha ◽  
...  

Environmental tobacco smoke exposure (ETS) and smoking have been described as the most prevalent factors in the development of certain diseases worldwide. According to the World Health Organization, more than 8 million people die every year due to exposure to tobacco, around 7 million due to direct ETS and the remaining due to exposure to second-hand smoke. Both active and second-hand exposure can be measured and controlled using specific biomarkers of tobacco and its derivatives, allowing the development of more efficient public health policies. Exposure to these compounds can be measured using different methods (involving for instance liquid- or gas-chromatographic procedures) in a wide range of biological specimens to estimate the type and degree of tobacco exposure. In recent years, a lot of research has been carried out using different extraction methods and different analytical equipment; this way, liquid–liquid extraction, solid-phase extraction or even miniaturized procedures have been used, followed by chromatographic analysis coupled mainly to mass spectrometric detection. Through this type of methodologies, second-hand smokers can be distinguished from active smokers, and this is also valid for e-cigarettes and vapers, among others, using their specific biomarkers. This review will focus on recent developments in the determination of tobacco smoke biomarkers, including nicotine and other tobacco alkaloids, specific nitrosamines, polycyclic aromatic hydrocarbons, etc. The methods for their detection will be discussed in detail, as well as the potential use of threshold values to distinguish between types of exposure.


Sign in / Sign up

Export Citation Format

Share Document