Prevalence of trimethoprim resistance genes in Escherichia coli isolates of human and animal origin in Lithuania

2010 ◽  
Vol 59 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Vaida Šeputienė ◽  
Justas Povilonis ◽  
Modestas Ružauskas ◽  
Alvydas Pavilonis ◽  
Edita Sužiedėlienė

A total of 456 non-repetitive Escherichia coli isolates from human clinical specimens (urinary, n=134; cervix, vagina and prostate, n=52; blood, pus and wounds, n=45), healthy animals (cattle, n=45; poultry, n=20) and diseased animals (cattle, n=53; swine, n=64; poultry, n=43) obtained in Lithuania during the period 2005–2008 were studied for trimethoprim (TMP) resistance and the prevalence of dfr genes. A TMP resistance rate in the range of 18–26 % respective to the origin was found in clinical isolates, 23–40 % in isolates from diseased animals and 9–20 % in isolates from healthy animals. Of 112 TMP-resistant isolates, 103 carried at least one of the six dfrA genes (dfrA1, dfrA5, dfrA8, dfrA12, dfrA14 and dfrA17) as determined by multiplex PCR and RFLP. The dfrA1 and dfrA17 genes were found most frequently in clinical isolates (17 and 19 isolates, respectively), whilst dfrA1 and dfrA14 genes dominated in isolates of animal origin (25 and 13 isolates, respectively). The dfrA5, dfrA12 and dfrA8 genes were detected at lower frequencies. The association with class 1/class 2 integrons was confirmed for 73–100 % of dfr genes found in most groups of isolates, except for the isolates from diseased swine. In this group, the majority of dfr-positive isolates (67 %, 8/12) carried dfrA8 (6/12) or dfrA14 genes (2/12) that were not associated with integrons. Non-integron location was also confirmed for the remaining dfrA8 genes (six clinical isolates and one isolate from diseased cattle) and for dfrA14 genes (two isolates from diseased cattle and swine each). All cassette-independent dfrA14 genes were found to be located within the strA gene. This study on the prevalence and distribution of TMP resistance genes among E. coli isolates of human and animal origin in Lithuania demonstrates that dfr genes are carried most frequently as gene cassettes within class 1 and/or class 2 integrons. However, TMP resistance in some of the isolates was found to be mediated by non-integron-associated dfrA8 and dfrA14 genes, indicating the existence of alternative sources for the spread of resistance.

2013 ◽  
Vol 62 (6) ◽  
pp. 851-858 ◽  
Author(s):  
Gong-Zheng Hu ◽  
Yu-Shan Pan ◽  
Hua Wu ◽  
Han Hu ◽  
Rui Xu ◽  
...  

Tetracycline resistance is one of the most frequently encountered resistance properties in bacteria of animal origin. The aim of the present study was to investigate the prevalence and diversity of tetracycline resistance (tet) genes among Escherichia coli clinical isolates from diseased ducks in China and to report the identification and sequencing of the tet(M) gene. The susceptibility of 85 Escherichia coli strains to tetracyclines was determined by broth microdilution, and the presence of tet genes was investigated by multiplex PCR. All of the 85 isolates were fully resistant to both oxytetracycline and tetracycline, and 76.5 % were resistant to doxycycline. Seventy-seven of the isolates (90.6 %) encoded multiple tet genes, with 17.6, 38.8 and 34.1 % encoding two, three and four tet genes, respectively, and only 7.1 % encoded a single tet(A) gene. The MICs of oxytetracycline and tetracycline for all isolates ranged from 16 to ≥128 µg ml−1 with a MIC90 of >128 µg ml−1, regardless of the type or number of tet genes encoded. Isolates containing tet(M) commonly had more than one tet gene per strain. The doxycycline resistance rate in the tet(M)-positive isolates was significantly higher than in the tet(M)-negative isolates (P<0.05). A full-length tet(M) gene, including the promoter region, was obtained by PCR in seven of the 41 tet(M)-positive isolates and was sequenced and cloned. The cloned tet(M) gene conferred resistance to tetracyclines in the recombinant Escherichia coli host strain. These results revealed that, in these isolates, the prevalence of multiple tet genes was strikingly high and that tet(M) played a role in doxycycline resistance.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kayhan Ilbeigi ◽  
Mahdi Askari Badouei ◽  
Hossein Vaezi ◽  
Hassan Zaheri ◽  
Sina Aghasharif ◽  
...  

Abstract Objectives The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is one of the major public health concerns as colistin is the last-resort antibiotic for treating infections caused by multidrug-resistant Gram-negative bacteria. We aimed to determine the prevalence of the prototype widespread colistin resistance genes (mcr-1 and mcr-2) among commensal and pathogenic Escherichia coli strains isolated from food-producing and companion animals in Iran. Results A total of 607 E. coli isolates which were previously collected from different animal sources between 2008 and 2016 used to uncover the possible presence of plasmid-mediated colistin resistance genes (mcr-1 and mcr-2) by PCR. Overall, our results could not confirm the presence of any mcr-1 or mcr-2 positive E. coli among the studied isolates. It is concluded that despite the important role of food-producing animals in transferring the antibiotic resistance, they were not the main source for carriage of mcr-1 and mcr-2 in Iran until 2016. This study suggests that the other mcr variants (mcr-3 to mcr-9) might be responsible for conferring colistin resistance in animal isolates in Iran. The possible linkage between pig farming industry and high level of mcr carriage in some countries needs to be clarified in future prospective studies.


2009 ◽  
Vol 72 (5) ◽  
pp. 1082-1088 ◽  
Author(s):  
AHLEM JOUINI ◽  
KARIM BEN SLAMA ◽  
YOLANDA SÁENZ ◽  
NAOUEL KLIBI ◽  
DANIELA COSTA ◽  
...  

Phenotypic and genotypic characterization of antimicrobial resistance was conducted for 98 Escherichia coli isolates recovered from 40 food samples of animal origin (poultry, sheep, beef, fish, and others) obtained in supermarkets and local butcheries in Tunis during 2004 and 2005. Susceptibility to 15 antimicrobial agents was tested by disk diffusion and agar dilution methods, the mechanisms of resistance were evaluated using PCR and sequencing methods, and the clonal relationship among isolates was evaluated using pulsed-field gel electrophoresis. High resistance was detected to tetracycline, sulphonamides, nalidixic acid, ampicillin, streptomycin, and trimethoprim-sulfamethoxazole (29 to 43% of isolates), but all isolates were susceptible to cefotaxime, ceftazidime, cefoxitin, azthreonam, and amikacin. One-third of the isolates had multiresistant phenotypes (resistance to at least five different families of antimicrobial agents). Different variants of blaTEM, tet, sul, dfrA, aadA, and aac(3) genes were detected in most of the strains resistant to ampicillin, tetracycline, sulphonamide, trimethoprim, streptomycin, and gentamicin, respectively. The presence of class 1 and class 2 integrons was studied in 15 sulphonamide-resistant unrelated E. coli strains, and 14 of these strains harbored class 1 integrons with five different arrangements of gene cassettes, and a class 2 integron with the dfrA1 + sat + aadA1 arrangement was found in one strain. This study revealed the high diversity of antimicrobial resistance genes, some of them included in integrons, in E. coli isolates of food origin.


Author(s):  
Jiangqing Huang ◽  
Fangjun Lan ◽  
Yanfang Lu ◽  
Bin Li

Background. Escherichia coli sequence type 131 (ST131) is an important multidrug-resistant extraintestinal pathogen, which can cause many kinds of infections. Integrons may play a crucial role in the dissemination of antibiotic resistance genes. The purpose of this study was to characterize the prevelance of integrons among E. coli ST131 strains in China. Methods. Eighty-three E. coli ST131 isolates were used in this study. The antibiotic susceptibility test was performed by the disk diffusion method. The presence and characterization of class 1, 2, and 3 integrons, as well as promotor of gene cassettes and other antimicrobial resistance genes, were detected by PCR and DNA sequencing. Transfer of integrons was carried out using a broth culture mating method. Clonal relatedness of E. coli ST131 isolates was analyzed by PFGE. Results. Overall, 26.5% (22/83) of the E. coli ST131 isolates carried class 1 integrons. Class 2 and 3 integrons were not found in this study. Two types of gene cassette arrays were demonstrated in this study and were as follows: dfrA17-aadA5 and aac(6′)-Ib-cr-cmlA5. Only one type of Pc promoter variant was detected among 22 integron-positive isolates (PcW). In vivo transfer of integron was successful for 9 of integron-positive E. coli ST131 isolates harboring resistance gene cassettes. Results of PFGE demonstrated that the integron-positive E. coli ST131 isolates were grouped into 12 different PFGE clusters. Conclusions. Our study showed a low prevalence of integrons was detected in E. coli ST131. Continued surveillance of this mobile genetic element should be performed to study the evolution of antibiotic resistance among E. coli ST131.


2009 ◽  
Vol 72 (1) ◽  
pp. 21-27 ◽  
Author(s):  
SUPAKANA NAGACHINTA ◽  
JINRU CHEN

This study was undertaken to characterize the integrons present in a group of Shiga toxin–producing Escherichia coli (STEC) isolates and the ability of these integrons to transfer antibiotic resistance genes from STEC to E. coli K-12 MG1655. A total of 177 STEC isolates were analyzed for antibiotic susceptibility and the presence of integrons. Class 1 integrons were detected in 14 STEC isolates, and a class 2 integron was identified in 1 STEC isolate. The STEC isolates positive for class 1 integrons were resistant to streptomycin (MICs &gt; 128 μg/ml) and sulfisoxazole (MICs &gt; 1,024 μg/ml), and the isolate positive for the class 2 integron was resistant to streptomycin (MIC of 128 μg/ml), trimethoprim (MIC &gt; 256 μg/ml), and streptothricin (MIC &gt; 32 μg/ml). Results of restriction digestion and nucleotide sequencing revealed that the cassette regions of the class 1 integrons had a uniform size of 1.1 kb and contained a nucleotide sequence identical to that of aadA1. The class 2 integron cassette region was 2.0 kb and carried nucleotide sequences homologous to those of aadA1, sat1, and dfrA1. Results of the conjugation experiments revealed that horizontal transfers of conjugative plasmids are responsible for the dissemination of class 1 integron–mediated antibiotic resistance genes from STEC to E. coli K-12 MG1655. Antibiotic resistance traits not mediated by integrons, such as resistance to tetracycline and oxytetracycline, were cotransferred with the integron-mediated antibiotic resistance genes. The study suggested a possible role of integron and conjugative plasmid in dissemination of genes conferring resistance to antibiotics from pathogenic to generic E. coli cells.


mSphere ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Ruichao Li ◽  
Mashkoor Mohsin ◽  
Xiaoyu Lu ◽  
Sabahat Abdullah ◽  
Asim Munir ◽  
...  

Global transmission of plasmid-mediated tigecycline resistance gene tet (X)-bearing Escherichia coli strains incurs a public health concern. However, the research focusing on the prevalence of tet (X)-positive isolates in clinical specimens is still rare, and to our knowledge, there is no such report from South Asia.


1997 ◽  
Vol 35 (11-12) ◽  
pp. 337-342 ◽  
Author(s):  
S. J. Turner ◽  
G. D. Lewis ◽  
A. R. Bellamy

A randomly amplified polymorphic DNA (RAPD) marker, localised to the glycine decarboxylase gene (gcvP) of Escherichia coli, has shown promise for use as a molecular marker for the identification E. coli isolates of human origin. Characterisation of the RAPD polymorphism has enabled development of target-specific primers for direct PCR detection of E. coli of human origin. A field trial was undertaken to investigate the suitability of the marker for detecting E. coli derived from sewage effluent discharged to a rural stream which already contained a substantial background level E. coli of animal origin. Multiplex PCR was performed on E. coli isolates from each sample site using the marker-specific primers in conjunction with primers directed towards a region of the β-glucuronidase (gusA) gene which served as an internal PCR control. Marker-positive strains were detected in raw sewage, treated effluent, stream water collected from immediately downstream of the effluent discharge and from a small tributary which ran down one side of the treatment plant. However, no marker-positive isolates were detected upstream of the treatment plant, despite the relatively high faecal coliform levels (mean = 3.5×103cfu/100ml) recorded at these sites. Further investigations on the side tributary revealed a possible entry point for sewage from the treatment system. Thus the PCR-based approach described here shows promise for the detection of human faecal contamination in rural environments and may be of use for other environmental applications such as the detection of septic tank leachate in rural catchments.


2016 ◽  
Vol 80 (1) ◽  
pp. 113-120 ◽  
Author(s):  
MANJA KRIZMAN ◽  
JERNEJA AMBROZIC AVGUSTIN ◽  
IRENA ZDOVC ◽  
MAJDA GOLOB ◽  
MARIJA TRKOV ◽  
...  

ABSTRACT Antibiotics have always appeared miraculous, saving innumerable lives. However, the unwise use of antimicrobial drugs has led to the appearance of resistant bacteria. The purpose of this study was to evaluate antimicrobial resistance in Escherichia coli (n =160) isolated from food of animal origin. The focus was on E. coli–producing extended-spectrum β-lactamases. E. coli was chosen because it is a part of the normal microbiota in mammals and can enter the food chain during slaughtering and food manipulation. Subsequently, its resistance genes can be transferred to pathogenic bacteria and human microbiota. Phenotypic and genotypic analyses of selected antimicrobial resistances were carried out together with a molecular analysis of virulence genes. E. coli isolates from food of animal origin were compared with clinical E. coli strains isolated from the human intestinal tract. Extended-spectrum β-lactamase–producing E. coli isolates were found in 9.4% of food isolates and in 1.8% of intestinal isolates. Phylogenetically, the majority of food (86.3%) and intestinal E. coli (58.1%) isolates were found to belong to the commensal phylogenetic groups A and B1. The distribution of 4 of 14 analyzed virulence factors was similar in the food and intestinal isolates. Strains isolated from food in Slovenia harbored resistance genes and virulence factors, which can constitute a problem for food safety if not handled properly.


2006 ◽  
Vol 50 (12) ◽  
pp. 4224-4228 ◽  
Author(s):  
Jean-Philippe Lavigne ◽  
Hélène Marchandin ◽  
Julien Delmas ◽  
Nicole Bouziges ◽  
Evelyne Lecaillon ◽  
...  

ABSTRACT By PCR, we screened for qnr genes 112 clinical isolates of extended-spectrum β-lactamase-producing Escherichia coli collected from hospitals in France during 2004. For the first time, 7.7% of CTX-M-producing E. coli isolates presented a plasmid-mediated resistance to quinolones. All strains harbored a qnrA gene located on a sul1-type class 1 integron with similar structure to the In36 integron.


Sign in / Sign up

Export Citation Format

Share Document