scholarly journals Removal of Cd(II) from Aquatic System UsingOscillatoriasp. Biosorbent

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Seyed Naser Azizi ◽  
Abasalt Hosseinzadeh Colagar ◽  
Seyede Maryam Hafeziyan

Biosorption of Cd(II) ions from aqueous solutions by native and driedOscillatoriasp. Cyanobacterium biomass was investigated in the batch mode. TheOscillatoriasp. was prepared from Molecular and Cell Laboratory of University of Mazandaran and grown in BG-11 medium. A comparison of Cd(II) adsorption properties of dried with nativeOscillatoriasp. biomass was made, the dried one showed a higher biosorption capacity and faster kinetic. The influence of solution pH, contact time, biomass concentration, initial metal ion concentration, and presence of coions using driedOscillatoriasp. biomass as well as pretreatment on the biosorption capacity of the biomass were studied. Various pretreatments ofOscillatoriasp. increased biosorption of Cd(II) at pH 7 in comparison with native biomass. However, heating at 100°C in a water bath showed significant improvement in Cd(II) biosorption capacity. The experimental biosorption data was well fitted to the Freundlich model compared to the Langmuir model, and the amount of Cd(II) removed from solution increased with increasing Cd(II) concentration. In addition, the dried biomass was investigated for Cd(II) removal from the simulated real sample containing about 14 mg/l Cd(II) at pH 7, under the same experimental condition.

2020 ◽  
Vol 85 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Muhammad Bilal ◽  
Javed Ali ◽  
Nousahd Hussain ◽  
Muhammad Umar ◽  
Shaukat Shujah ◽  
...  

The potential of activated carbon as a cheap bioadsorbent prepared from Reptonia buxifolia seeds, for the removal of Pb(II) from wastewater was investigated. The morphology and structure of the prepared activated carbon was characterized using different techniques. Adsorption phenomenon was studied by varying the metal ion concentration, contact time, temperature, and pH, in a batch process. The SEM results showed that the thermal treatment significantly altered the topography of synthesized activated carbon due to formation of numerous pores on the surface of the adsorbent. At equilibrium, the Langmuir model gave a better fit to the adsorption isotherm results than the Freundlich model. Kinetics data indicate that equilibrium is established within the first 60 min. The results showed that activated carbon obtained from seeds of R. buxifolia have the potential to be used as alternative economical biosorbent for the removal of heavy metals from wastewater.


2021 ◽  
Vol 13 (1) ◽  
pp. 158-170
Author(s):  
P. Yadav ◽  
V.C. Gupta

In present work, comparative study of sorption potential of raw and chemically activated orange peel powder has been explored for the removal of arsenite ions (As III) from wastewater. Several operating parameters such as contact time, adsorbent dose, adsorbate ion concentration, solution pH as well as temperature were studied in batch reactor. Surface as well as physicochemical analysis of orange peel was done by using FTIR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopy), proximate and ultimate analysis. Maximum removal of As (III) 86.3% and 87% was obtained at initial metal ion concentration 20 mg/l and 25 mg/L, optimum pH 2 and 2.8, temperature 30°C and 25°C, contact time 120 and 150 minutes as well as the adsorbent dose 4g for raw and chemically activated orange peel respectively. Modeling of experimental data showed that Freundlich model (R2 = 97.45) had a better fit over Langmuir isotherm (R2 = 96.33) for raw orange peel and the Freundlich model (R2 =99.8%) in comparison to Langmuir model (R2 =94.5%) shows better fit. The present comparative study depicts that the chemically activated orange peel powder are more effective than raw orange peel powder. Thus, orange peel is found to be promising simple material for removal of arsenite ions (As III) ions.  


2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2013 ◽  
Vol 19 (3) ◽  
pp. 347-357 ◽  
Author(s):  
S.E. Moradi ◽  
J. Khodaveisy ◽  
R. Dashti

Direct and indirect releases of large quantities of surfactants to the environment may result in serious health and environmental problems. Therefore, surfactants should be removed from water before release to the environment or delivery for public use. In the present work, the removal of anionic surfactants, benzene sulfonate (BS), p-toluene sulfonate (TS) and 4-octylbenzene sulfonate (OBS) from water by adsorption onto Amino modified mesoporous carbon (AMC) were studied. The AMC surface chemistry and textural properties was characterized by nitrogen adsorption, XRD and FT-IR analyses. Experiments were conducted in batch mode with the variables such as amount of contact time, solution pH, dose of adsorbent and temperature. Finally, the adsorption isotherms of anionic surfactants on mesoporous carbon adsorbents were in agreement with a Langmuir model. AMC has shown higher anionic surfactants adsorption capacity than the untreated mesoporous carbon, which can explain by strong interaction between anionic surfactant and cationic surface of adsorbent.


2021 ◽  
Vol 25 (1) ◽  
pp. 853-864
Author(s):  
Gideon Masedi Nii Ayi Lomoko ◽  
Dainius Paliulis ◽  
Karlis Valters

Abstract The discharge of wastewater containing heavy metals into waterbodies is a major environmental issue that can influence the quality of the water supply; therefore, it is important to remove the pollutants dangerous to living organisms. The adsorption of copper (II) ions on modified wheat bran was investigated with respect to initial solution pH (2.0-7.0), contact time (5–120 min), adsorbent mass (0.5 g and 1.0 g), and initial metal ion concentration (2.0–20 mg/L). The optimum adsorption conditions were found to be at pH 5.0 and a contact time of 60 min with an adsorbent mass of 1.0 g where the maximum efficiency was recorded as 84.5 %. The adsorption uptake (in mg/g) of copper (II) ions slowly reached equilibrium in around 30 min and this amount was 0.30 mg/g using an adsorbent mass of 0.5 g. The adsorption uptake of copper (II) ions decreased with increasing mass of adsorbent and the adsorption efficiency (in %) increased with increasing mass of adsorbent. The experimental results were described using the Langmuir and Freundlich models, with the Langmuir model fitting better than the Freundlich model. The maximum modelled adsorption capacity was 4.24 mg/g and the modelled specific surface area of modified wheat bran was 6.36 m2. It was observed that the adsorption of copper (II) ions on modified wheat bran is efficient and suitable, therefore modified wheat bran is a relatively good adsorbent for the removal of copper (II) ions from polluted water compared to other agricultural adsorbents.


2018 ◽  
Vol 5 (8) ◽  
pp. 171667 ◽  
Author(s):  
Xiong Liu ◽  
Longqi Xu ◽  
Yaqing Liu ◽  
Wenqi Zhou

Types of resins anchored on citric acid were synthesized and identified. The citric acid-modified resins PS-CA, PS-O-CA and PS-N-CA were synthesized by anchoring citric acid on PS-Cl, PS-OH and PS-NH 2 , respectively. The PS-CA, PS-O-CA and PS-N-CA were used to adsorb Fe 3+ , Al 3+ , Cu 2+ , Pb 2+ , Cd 2+ and Hg 2+ . The influences of pH, adsorption time and metal ion concentration on the adsorption capacities of the resins were investigated. After optimization, PS-CA was a good adsorbent to Fe 3+ , Cu 2+ , Pb 2+ and Cd 2+ with q m values of 143.9 mg g −1 , 77.4 mg g −1 , 18.9 mg g −1 and 119.9 mg g −1 , respectively. PS-N-CA was a good adsorbent to Al 3+ and Hg 2+ with q m values of 176.6 mg g −1 and 114.9 mg g −1 , respectively. The adsorption kinetics and adsorption isotherm experiments indicated that the pseudo-first-order rate equation was more appropriate for characterizing the kinetic data and the Langmuir model was more suitable for fitting the equilibrium data. The reusability of the citric acid-modified resins was also evaluated and these resins exhibited considerable reusability.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wedad A. Al-Onazi ◽  
Mohamed H.H. Ali ◽  
Tahani Al-Garni

Some agricultural byproducts are useful for solving wastewater pollution problems. These byproducts are of low cost and are effective and ecofriendly. The study aim was to investigate the possibility of using pomegranate peel (PP) and date pit (DP) activated carbon (PPAC and DPAC, respectively) as sorbents to remove Cd(II) and Pb(II) from aqueous solutions. Agricultural wastes of DPs and PPs were subjected to carbonization and chemical activation with H3PO4 (60%) and ZnCl2 and used as adsorbents to remove Cd(II) and Pb(II) from their aqueous solutions. The physical characterizations of PPAC and DPAC, including determination of surface area, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy, were performed. The following factors affected adsorption: solution pH, adsorbent dosage, initial metal ion concentration, and contact time. These factors were studied to identify the optimal adsorption conditions. The results showed that the maximum adsorptions of Cd(II) and Pb(II) were achieved at pH ranging from 6 to 6.5, 90 min contact time, and 0.5 g/L for PPAC and 1 g/L for DPAC dosage. Furthermore, the adsorption efficiencies for both Pb(II) and Cd(II) were higher for PPAC than for DPAC. However, the recorded Qmax values for PPAC were 68.6 and 53.8 mg/g for Pb(II) and Cd(II) and for DPAC were 34.18 and 32.90 mg/g for Pb(II) and Cd(II), respectively. The Langmuir isotherm model fit the adsorption data better than the Freundlich model. Kinetically, the adsorption reaction followed a pseudo-second-order reaction model, with qe ranging from 12.0 to 22.37 mg/g and an R2 value of 0.99.


2005 ◽  
Vol 40 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Rais Ahmad ◽  
Rifaqat Ali Khan Rao ◽  
Mir Mohammad Masood

Abstract In the present study, the potential of Pinus roxburghii bark as an adsorbent for the removal of heavy metals such as Cr(VI), Ni(II), Cu(II), Cd(II) and Zn(II) from aqueous solution at ambient temperature was investigated. Adsorption capacity of the material was found to be 4.15, 3.89, 3.81, 3.53 and 3.01 mg g-1 for Cr(VI), Zn(II), Cu(II), Ni(II) and Cd(II), respectively, at an initial metal ion concentration of 50 mg L-1 at pH 6.5. The effect of concentration, contact time, adsorbent dose, solution pH, adsorbent particle size, salinity and hardness on the adsorption of Cr(VI) were studied in detail in batch experiments. The equilibrium contact time for Cr(VI) adsorption was found to be 1 h. Adsorption equilibrium data fit well to the Freundlich isotherm in the concentration range studied. The maximum adsorption (96.2%) was recorded at pH 3 for the initial Cr(VI) concentration of 50 mg L-1. The adsorbed metal ions from industrial wastewater were recovered using 0.1 M HCl solution. The column operation was found to be more effective compared to batch process. The percent recovery of Cr(VI) from industrial wastewater by column operation and batch process was found to be 85.8 and 65%, respectively. The results show that Pinus roxburghii bark can be used as a cost-effective adsorbent for the removal and recovery of Cr(VI) from wastewater.


2015 ◽  
Vol 50 (2) ◽  
pp. 109-122 ◽  
Author(s):  
Gholamreza Tolian ◽  
Seyed Ali Jafari ◽  
Saeid Zarei

In the present paper, the biosorption capacity of an indigenous seaweed Enteromorpha sp. was assessed and compared for nickel(II) and cadmium(II) removal from aqueous solution. Response surface methodology based on Box–Behnken design was employed to achieve the optimum removal conditions as well as investigating the effects of some independent variables on the process performance. It was found that the maximum nickel(II) removal achieved was 87.16% under optimum conditions of pH 4.79, biomass concentration of 1,000 mg/L, contact time 70 min and temperature of 25 °C. For cadmium the optimum conditions were defined as pH 4.88, biomass concentration of 1,000 mg/L, contact time 50 min and temperature fixed at 65 °C which resulted in a maximum 75.16% removal. Equilibrium isotherm studies revealed that Freundlich and Langmuir models were more successful for describing nickel(II) and cadmium(II) biosorption data, respectively. The maximum sorption capacities of biomass, qmax, for nickel(II) and cadmium(II) were predicted as 250 and 167 mg/g, respectively, by the Langmuir model. The results suggest Enteromorpha seaweed as an eco-friendly and suitable biosorbent for nickel(II) and cadmium(II) removal from aqueous solutions.


Author(s):  
Daniel O. Jalija ◽  
Adamu Uzairu

The objective of this investigation was to study the biosorption of Cd (II) from aqueous solution onto Penicillium sp immobilized in calcium alginate and to determine the isotherms and kinetics of the adsorption process. The capacity for Cd (II) biosorption was investigated as a function of pH, adsorbent dose, contact time and initial metal ion concentration. The results showed that the removal efficiency increased with increase in adsorbent dosage and solution pH. For adsorbent dosage, the highest removal efficiency was 93.45% (adsorbent dosage of 200 mg). In terms of pH, the highest removal percentage was 89.75% at pH of 9.0 and Cd (II) ion concentration of 2 mg/L. The experimental data fitted the Freundlich isotherm better than the Langmuir isotherm. Their R2 values were 0.9852 and 0.8053 respectively. The calculated maximum biosorption capacity Qo was 7.12 mg g-1. The values of R2 for the pseudo – first and pseudo – second order kinetics are 0.9007 and 0.9960 respectively. The experimental value of qe, the biosorption capacity at equilibrium, for the pseudo second order model was closer to the theoretical value than that of the pseudo – first order indicating that chemisorption is the probable mechanism of the process.  These results show that the investigated biosorbent is a good low cost adsorbent for the removal of Cd (II) from wastewaters.


Sign in / Sign up

Export Citation Format

Share Document