scholarly journals Comparative study on biosorption of arsenite ions onto raw and chemically activated orange peel powder in batch reactor

2021 ◽  
Vol 13 (1) ◽  
pp. 158-170
Author(s):  
P. Yadav ◽  
V.C. Gupta

In present work, comparative study of sorption potential of raw and chemically activated orange peel powder has been explored for the removal of arsenite ions (As III) from wastewater. Several operating parameters such as contact time, adsorbent dose, adsorbate ion concentration, solution pH as well as temperature were studied in batch reactor. Surface as well as physicochemical analysis of orange peel was done by using FTIR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopy), proximate and ultimate analysis. Maximum removal of As (III) 86.3% and 87% was obtained at initial metal ion concentration 20 mg/l and 25 mg/L, optimum pH 2 and 2.8, temperature 30°C and 25°C, contact time 120 and 150 minutes as well as the adsorbent dose 4g for raw and chemically activated orange peel respectively. Modeling of experimental data showed that Freundlich model (R2 = 97.45) had a better fit over Langmuir isotherm (R2 = 96.33) for raw orange peel and the Freundlich model (R2 =99.8%) in comparison to Langmuir model (R2 =94.5%) shows better fit. The present comparative study depicts that the chemically activated orange peel powder are more effective than raw orange peel powder. Thus, orange peel is found to be promising simple material for removal of arsenite ions (As III) ions.  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Seyed Naser Azizi ◽  
Abasalt Hosseinzadeh Colagar ◽  
Seyede Maryam Hafeziyan

Biosorption of Cd(II) ions from aqueous solutions by native and driedOscillatoriasp. Cyanobacterium biomass was investigated in the batch mode. TheOscillatoriasp. was prepared from Molecular and Cell Laboratory of University of Mazandaran and grown in BG-11 medium. A comparison of Cd(II) adsorption properties of dried with nativeOscillatoriasp. biomass was made, the dried one showed a higher biosorption capacity and faster kinetic. The influence of solution pH, contact time, biomass concentration, initial metal ion concentration, and presence of coions using driedOscillatoriasp. biomass as well as pretreatment on the biosorption capacity of the biomass were studied. Various pretreatments ofOscillatoriasp. increased biosorption of Cd(II) at pH 7 in comparison with native biomass. However, heating at 100°C in a water bath showed significant improvement in Cd(II) biosorption capacity. The experimental biosorption data was well fitted to the Freundlich model compared to the Langmuir model, and the amount of Cd(II) removed from solution increased with increasing Cd(II) concentration. In addition, the dried biomass was investigated for Cd(II) removal from the simulated real sample containing about 14 mg/l Cd(II) at pH 7, under the same experimental condition.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2020 ◽  
Author(s):  
Tolera Seda Badessa ◽  
Esayas Wakuma ◽  
Ali Mohammed Yimer

Abstract Chromium is an extremely toxic metal in the form of Cr (VI) that causes severe environmental and health problems. Therefore, the aim of this study was to remove chromium ions from wastewater by using cost effective and environmentally friendly bio-sorbents; Moringa stenopetala Seed Powder (MSSP), and Banana Peel Powder (BPP) and to evaluate its adsorption capacities as bio-sorbents. FT-IR characterization of the adsorbents showed that there was a change in the functional groups of the structure of both adsorbents before and after the adsorption that might be due to the adsorption processes taken place on the surface of adsorbent. Adsorption experiments were carried out as batch studies with different contact times, pH, adsorbent dose, initial metal ion concentration, and temperature. Results showed maximum removal efficiency for Cr (VI) at 120 minutes contact time, adsorbent dose of 20 g/L and pH 2 by MSSP and pH 4 by BPP. The percentage removal of Cr(VI) increased with increasing adsorbent dose( from 5g/L to 20 g/L) and contact time (from 60 min to 120 min). Freundlich isotherm model showed a better fit to the equilibrium data than the Langmuir model. The kinetics of adsorption for chromium was well represented by pseudo-second order kinetic model and the calculated equilibrium sorption capacity of the model showed good agreement with the sorption capacity obtained from Experimental results.


2021 ◽  
Vol 25 (1) ◽  
pp. 853-864
Author(s):  
Gideon Masedi Nii Ayi Lomoko ◽  
Dainius Paliulis ◽  
Karlis Valters

Abstract The discharge of wastewater containing heavy metals into waterbodies is a major environmental issue that can influence the quality of the water supply; therefore, it is important to remove the pollutants dangerous to living organisms. The adsorption of copper (II) ions on modified wheat bran was investigated with respect to initial solution pH (2.0-7.0), contact time (5–120 min), adsorbent mass (0.5 g and 1.0 g), and initial metal ion concentration (2.0–20 mg/L). The optimum adsorption conditions were found to be at pH 5.0 and a contact time of 60 min with an adsorbent mass of 1.0 g where the maximum efficiency was recorded as 84.5 %. The adsorption uptake (in mg/g) of copper (II) ions slowly reached equilibrium in around 30 min and this amount was 0.30 mg/g using an adsorbent mass of 0.5 g. The adsorption uptake of copper (II) ions decreased with increasing mass of adsorbent and the adsorption efficiency (in %) increased with increasing mass of adsorbent. The experimental results were described using the Langmuir and Freundlich models, with the Langmuir model fitting better than the Freundlich model. The maximum modelled adsorption capacity was 4.24 mg/g and the modelled specific surface area of modified wheat bran was 6.36 m2. It was observed that the adsorption of copper (II) ions on modified wheat bran is efficient and suitable, therefore modified wheat bran is a relatively good adsorbent for the removal of copper (II) ions from polluted water compared to other agricultural adsorbents.


2020 ◽  
Vol 32 (3) ◽  
pp. 495-500
Author(s):  
Rajesh Kumar ◽  
Harish Sharma ◽  
M.C. Vishwakarma ◽  
S.K. Joshi ◽  
N.S. Bhandari ◽  
...  

In the present study, removal efficiency (%) of Rubus ellipticus leaves (REL) as an adsorbent for the removal of Pb(II), Cu(II) and Cd(II) ions was investigated. Different parameters i.e., pH, contact time, temperature, adsorbent dose and initial metal ion concentration were investigated to obtain the optimum adsorption efficiency. At pH 4, a maximum adsorption was 84.6, 80.2 and 74.5 % for Pb(II), Cu(II) and Cd(II) ions, respectively. The maximum adsorption of all the three metal ions obtained at contact time (75 min), initial metal ion concentration (10 mg/L), temperature (25 ºC) and adsorbent dose (5.0 g). The equilibrium adsorption of Pb(II), Cu(II) and Cd(II) ions at different temperature was described by Langmuir, Freundlich and Temkin isotherms. The equilibrium data fitted well the Langmuir adsorption isotherm. Thermodynamic parameters like Gibb′s free energy (ΔGº), enthalpy (ΔHº) and entropy (ΔSº) were also calculated. The calculated parameters indicated that adsorption of Pb(II), Cu(II) and Cd(II) ions onto Rubus ellipticus leaves (REL) was spontaneous (ΔGº < 0), endothermic (ΔGº > 0). The feasibility of the process was evident from the positive value of ΔSº.


2017 ◽  
Vol 2 (4) ◽  
pp. 442 ◽  
Author(s):  
K. Uthra ◽  
K. Kadirvelu

<p class="p1"><span class="s1"> </span>Biosorption of Ni(II) was investigated in this study using dead biomass of gram positive (<strong><em>Bacillus subtilis</em></strong>) and gram negative (<strong><em>Pseudomonas aeruginosa</em></strong>).The effects of pH, initial adsorbent dosage, initial metal ion concentration, contact time and temperature were studied in batch experiment. A contact time of 40 min, pH 5.0 and temperature 30<span class="s2">o</span>C were found to be optimum. Nickel removal decreased from 77 to 45% as the concentration increased from 50 to 250 mg/L. The Ni(II) removal increased from 45 to 75% as adsorbent dose increased from 0.25 to 1.5 g/L. The Langmuir and freundlich models for dynamics of metal of metal ion uptake proposed in this work fit the experimental data reasonably well. The adsorption capacity (Q<span class="s2">o</span>) calculated from Langmuir isotherm was 89.08 mg for Ni (II).<span class="Apple-converted-space"> </span></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wedad A. Al-Onazi ◽  
Mohamed H.H. Ali ◽  
Tahani Al-Garni

Some agricultural byproducts are useful for solving wastewater pollution problems. These byproducts are of low cost and are effective and ecofriendly. The study aim was to investigate the possibility of using pomegranate peel (PP) and date pit (DP) activated carbon (PPAC and DPAC, respectively) as sorbents to remove Cd(II) and Pb(II) from aqueous solutions. Agricultural wastes of DPs and PPs were subjected to carbonization and chemical activation with H3PO4 (60%) and ZnCl2 and used as adsorbents to remove Cd(II) and Pb(II) from their aqueous solutions. The physical characterizations of PPAC and DPAC, including determination of surface area, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy, were performed. The following factors affected adsorption: solution pH, adsorbent dosage, initial metal ion concentration, and contact time. These factors were studied to identify the optimal adsorption conditions. The results showed that the maximum adsorptions of Cd(II) and Pb(II) were achieved at pH ranging from 6 to 6.5, 90 min contact time, and 0.5 g/L for PPAC and 1 g/L for DPAC dosage. Furthermore, the adsorption efficiencies for both Pb(II) and Cd(II) were higher for PPAC than for DPAC. However, the recorded Qmax values for PPAC were 68.6 and 53.8 mg/g for Pb(II) and Cd(II) and for DPAC were 34.18 and 32.90 mg/g for Pb(II) and Cd(II), respectively. The Langmuir isotherm model fit the adsorption data better than the Freundlich model. Kinetically, the adsorption reaction followed a pseudo-second-order reaction model, with qe ranging from 12.0 to 22.37 mg/g and an R2 value of 0.99.


2005 ◽  
Vol 40 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Rais Ahmad ◽  
Rifaqat Ali Khan Rao ◽  
Mir Mohammad Masood

Abstract In the present study, the potential of Pinus roxburghii bark as an adsorbent for the removal of heavy metals such as Cr(VI), Ni(II), Cu(II), Cd(II) and Zn(II) from aqueous solution at ambient temperature was investigated. Adsorption capacity of the material was found to be 4.15, 3.89, 3.81, 3.53 and 3.01 mg g-1 for Cr(VI), Zn(II), Cu(II), Ni(II) and Cd(II), respectively, at an initial metal ion concentration of 50 mg L-1 at pH 6.5. The effect of concentration, contact time, adsorbent dose, solution pH, adsorbent particle size, salinity and hardness on the adsorption of Cr(VI) were studied in detail in batch experiments. The equilibrium contact time for Cr(VI) adsorption was found to be 1 h. Adsorption equilibrium data fit well to the Freundlich isotherm in the concentration range studied. The maximum adsorption (96.2%) was recorded at pH 3 for the initial Cr(VI) concentration of 50 mg L-1. The adsorbed metal ions from industrial wastewater were recovered using 0.1 M HCl solution. The column operation was found to be more effective compared to batch process. The percent recovery of Cr(VI) from industrial wastewater by column operation and batch process was found to be 85.8 and 65%, respectively. The results show that Pinus roxburghii bark can be used as a cost-effective adsorbent for the removal and recovery of Cr(VI) from wastewater.


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Tolera Seda Badessa ◽  
Esayas Wakuma ◽  
Ali Mohammed Yimer

Abstract Chromium is an extremely toxic metal in the form of Cr(VI) that causes severe environmental and health problems. Therefore, the aim of this study was to remove chromium ions from wastewater by using cost effective and environmentally friendly bio-sorbents; Moringa stenopetala seed powder (MSSP), and banana peel powder (BPP) and to evaluate its adsorption capacities as bio-sorbents. FT-IR characterization of the adsorbents showed that there was a change in the functional groups of the structure of both adsorbents before and after the adsorption that might be due to the adsorption processes taken place on the surface of adsorbent. Adsorption experiments were carried out as batch studies with different contact times, pH, adsorbent dose, initial metal ion concentration, and temperature. Results showed maximum removal efficiency for Cr(VI) at 120 min contact time, adsorbent dose of 20 g/L and pH 2 by MSSP and pH 4 by BPP. The percentage removal of Cr(VI) increased with increasing adsorbent dose (from 5 to 20 g/L) and contact time (from 60 to 120 min). Freundlich isotherm model showed a better fit to the equilibrium data than the Langmuir model. The kinetics of adsorption for chromium was well represented by pseudo-second order kinetic model and the calculated equilibrium sorption capacity of the model showed good agreement with the sorption capacity obtained from experimental results.


2011 ◽  
Vol 46 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Harminder Singh ◽  
V. K. Rattan

This work has been carried out to check the ability of three biowastes, viz. corn cob ash (CCA), mango stone ash (MSA) and orange peel powder (OPP), to remove Ni(II) ions from aqueous solution. The surface environment of the adsorbents was characterized by Fourier transformation infrared spectroscopy and scanning electron microscopy (SEM) analysis which showed that these adsorbents contain favorable organic groups, such as, amido, amino, hydroxyls, carboxyl groups, etc., on their surface and have uniform characteristics in their surface morphology. The particle sizes for the three screened biowastes were found to be in the range of 1.5–4, 0.7–4.5 and 15–35 μm for CCA, MSA and OPP, respectively, as revealed by SEM. The effect of different system variables, viz. adsorbent dose, initial metal ion concentration and pH, were studied. Both Langmuir and Freundlich adsorption models were suitable for describing the sorption of Ni(II) on all three adsorbents used. The maximum sorption capacities of CCA, OPP and MSA used in this study were 107.4, 14.0, and 26.6 mg/g, respectively, for Ni(II) ions at optimum adsorbent dose.


Sign in / Sign up

Export Citation Format

Share Document