scholarly journals Physiological and Growth Responses of Six Turfgrass Species Relative to Salinity Tolerance

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Kamal Uddin ◽  
Abdul Shukor Juraimi ◽  
Mohd. Razi Ismail ◽  
Md. Alamgir Hossain ◽  
Radziah Othman ◽  
...  

The demand for salinity-tolerant turfgrasses is increasing due to augmented use of effluent or low-quality water (sea water) for turf irrigation and the growing turfgrass industry in coastal areas. Experimental plants, grown in plastic pots filled with a mixture of river sand andKOSASRpeat (9 : 1), were irrigated with sea water at different dilutions imparting salinity levels of 0, 8, 16, 24, 32, 40, or 48 dS m-1. Salinity tolerance was evaluated on the basis of leaf firing, shoot and root growth reduction, proline content, and relative water content.Paspalum vaginatumwas found to be most salt tolerant followed byZoysia japonicaandZoysia matrella, whileDigitaria didactyla,Cynodon dactylon“Tifdwarf,” andCynodon dactylon“Satiri” were moderately tolerant. The results indicate the importance of turfgrass varietal selection for saline environments.

1994 ◽  
Vol 72 (8) ◽  
pp. 1216-1221 ◽  
Author(s):  
O. T. Okusanya ◽  
O. Oyesiku

The germination and growth responses of two legumes, Vigna luteola and Vigna vexillata, to different salinity levels were compared in laboratory experiments. Vigna luteola seeds tolerated a higher level of salinity and germinated significantly better at high salinities than corresponding results for V. vexillata. Seedlings of V. luteola exhibited a significant increase in dry weight at 10% sea water followed by a significant decrease at 30% seawater and above. Vigna vexillata seedlings showed a gradual decrease in dry weight with increased salinity. Except at 0% seawater, dry weights of V. luteola seedlings were significantly higher than those of V. vexillata at all salinities tested. The proportion of root weight to total plant dry weight increased with increased salinity in V. luteola; the reverse was the case in V. vexillata. In both species, increased salinity resulted in increased sodium content but decreased potassium and calcium contents. While the sodium content of the shoot of V. vexillata was higher than that of V. luteola, the amount in the roots of V. luteola was higher. The potassium and calcium contents were higher in V. luteola than in V. vexillata and the sodium to potassium ratio values were lower in V. luteola than in V. vexillata. The results are compared with those of other legumes and discussed in relation to the habitats of the species, the characteristics of halophytes, and the uses which these legumes may have in salt-enriched lands. Key words: salinity, tolerance, germination, growth, Vigna.


2017 ◽  
Vol 9 (11) ◽  
pp. 283 ◽  
Author(s):  
Renata V. Menezes ◽  
André D. Azevedo Neto ◽  
Hans R. Gheyi ◽  
Alide M. W. Cova ◽  
Hewsley H. B. Silva

Basil (Ocimum basilicum L.) is a medicinal species of Lamiaceae family, popularly known for its multiple benefits and high levels of volatile compounds. The species is considered to be one of the most essential oil producing plants. Also cultivated in Brazil as a condiment plant in home gardens. The objective of this study was to evaluate the effect of salinity on the growth of basil in nutrient solution of Furlani and to identify variables related to the salinity tolerance in this species. The first assay was performed with variation of five saline levels (0 - control, 20, 40, 60 and 80 mM NaCl). In the second assay six genotypes were evaluated in two salinity levels 0 and 80 mM NaCl. The height, stem diameter, number of leaves, dry mass and inorganic solutes in different organs, photosynthetic pigments, absolute membrane integrity and relative water content were evaluated. All biometric variables in basil were significantly reduced by salinity. Dry matter yield and percentage of membrane integrity were the variables that best discriminated the characteristics of salinity tolerance among the studied basil genotypes. Basil genotypes showed a differentiated tolerance among the genotypes, the ‘Toscano folha de alface’ being considered as the most tolerant and ‘Gennaro de menta’ as the most sensitive, among the species studied.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 827-829 ◽  
Author(s):  
Kenneth B. Marcum ◽  
Mohammad Pessarakli ◽  
David M. Kopec

Relative salinity tolerance of 21 desert saltgrass accessions (Distichlis spicata [L.] Greene var. stricta (Torr.) Beetle), and one hybrid bermudagrass `Midiron' (Cynodon dactylon [L.] Pers. var. dactylon × C. transvaalensis Burtt-Davy `Midiron') were determined via solution culture in a controlled-environment greenhouse. Salinity in treatment tanks was gradually raised, and grasses progressively exposed to 0.2, 0.4, 0.6, 0.8, and 1.0 m total salinity in sequence. Grasses were held at each salinity level for 1 week, followed by determination of relative salinity injury. Relative (to control) live green shoot weight (SW), relative root weight (RW), and % canopy green leaf area (GLA) were highly correlated with one-another (all r values >0.7), being mutually effective indicators of relative salinity tolerance. The range of salinity tolerance among desert saltgrass accessions was substantial, though all were more tolerant than bermudagrass. Accessions A77, A48, and A55 suffered little visual shoot injury, and continued shoot and root growth at a low level, when exposed up to 1.0 m (71,625 mg·L–1); sea water is about 35,000 mg·L–1), and therefore can be considered halophytes.


2018 ◽  
Vol 28 (3) ◽  
pp. 276-283 ◽  
Author(s):  
Mingying Xiang ◽  
Justin Q. Moss ◽  
Dennis L. Martin ◽  
Yanqi Wu

Turfgrass managers are using reclaimed water as an irrigation resource because of the decreasing availability and increasing cost of fresh water. Much attention, thereby, has been drawn to select salinity-tolerant turfgrass cultivars. An experiment was conducted to evaluate the relative salinity tolerance of 10 common bermudagrasses (Cynodon dactylon) under a controlled environment in a randomized complete block design with six replications. ‘SeaStar’ seashore paspalum (Paspalum vaginatum) was included in this study as a salinity-tolerant standard. All entries were tested under four salinity levels (1.5, 15, 30, and 45 dS·m−1) consecutively using subirrigation systems. The relative salinity tolerance among entries was determined by various parameters, including the normalized difference vegetation index (NDVI), percentage green cover determined by digital image analysis (DIA), leaf firing (LF), turf quality (TQ), shoot vertical growth (VG), and dark green color index (DGCI). Results indicated that salinity tolerance varied among entries. Except LF, all parameters decreased as the salinity levels of the irrigation water increased. ‘Princess 77’ and ‘Yukon’ provided the highest level of performance among the common bermudagrass entries at the 30 dS·m−1 salinity level. At 45 dS·m−1, the percent green cover as measured using DIA varied from 4.97% to 16.11% among common bermudagrasses, where ‘SeaStar’ with a DIA of 22.92% was higher than all the common bermudagrass entries. The parameters LF, TQ, NDVI, DGCI, VG, and DIA were all correlated with one another. Leaf firing had the highest correlation with other parameters, which defined its value as a relative salinity tolerance measurement for common bermudagrass development and selection.


1994 ◽  
Vol 119 (4) ◽  
pp. 779-784 ◽  
Author(s):  
Kenneth B. Marcum ◽  
Charles L. Murdoch

Physiological responses to salinity and relative salt tolerance of six C4 turfgrasses were investigated. Grasses were grown in solution culture containing 1, 100, 200, 300, and 400 mm NaCl. Salinity tolerance was assessed according to reduction in relative shoot growth and turf quality with increased salinity. Manilagrass cv. Matrella (FC13521) (Zoysia matrella (L.) Merr.), seashore paspalum (Hawaii selection) (Paspalum vaginatum Swartz), and St. Augustinegrass (Hawaii selection) (Stenotaphrum secundatum Walt.) were tolerant, shoot growth being reduced 50% at ≈400 mm salinity. Bermudagrass cv. Tifway (Cynodon dactylon × C. transvaalensis Burtt-Davey) was intermediate in tolerance, shoot growth being reduced 50% at ≈270 mm salinity. Japanese lawngrass cv. Korean common (Zoysia japonica Steud) was salt-sensitive, while centipedegrass (common) (Eremochloa ophiuroides (Munro) Hack.) was very salt-sensitive, with total shoot mortality occurring at ≈230 and 170 mm salinity, respectively. Salinity tolerance was associated with exclusion of Na+ and Cl- from shoots, a process aided by leaf salt glands in manilagrass and bermudagrass. Shoot Na+ and Cl- levels were high at low (100 to 200 mm) salinity in centipedegrass and Japanese lawngrass resulting in leaf burn and shoot die-back. Levels of glycinebetaine and proline, proposed cytoplasmic compatible solutes, increased with increased salinity in the shoots of all grasses except centipedegrass, with tissue water levels reaching 107 and 96 mm at 400 mm salinity in bermudagrass and manilagrass, respectively. Glycinebetaine and proline may make a significant contribution to cytoplasmic osmotic adjustment under salinity in all grasses except centipedegrass.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1138-1142 ◽  
Author(s):  
Geungjoo Lee ◽  
Ronny R. Duncan ◽  
Robert N. Carrow

Evaluation of turfgrass salt tolerance is a basic strategy for selecting grasses that can be grown in areas with salt-affected water or soils. Our objectives were to determine the relative salinity tolerances of 32 grasses and to evaluate potential shoot-based criteria for assessing salinity tolerance. Shoot growth responses to salinity of 28 seashore paspalums (Paspalum vaginatum Swartz) and four bermudagrass [Cynodon dactylon (L.) × C. transvalensis Burtt-Davy] cultivars were investigated under solution/sand culture in a greenhouse. Turfgrasses were grown in a sea-salt amended nutrient solution. Salinity ranges were 1.1 to 41.1 dS·m-1 based on electrical conductivity of the solution (ECw). Selection criteria to assess salt tolerance were absolute growth at 1.1 (ECw0), 24.8 (ECw24), 33.1 (ECw32), and 41.1 dS·m-1 (ECw40); threshold ECw; ECw for 25% and 50% growth reduction based on ECw0 growth; and leaf firing (LF) at ECw0 and ECw40 (LF0 and LF40, respectively). Significant variations among 32 entries were observed for all shoot responses except threshold ECw. Ranges of values for shoot parameters were: inherent growth at ECw0 = 0.10 to 0.98 g dry weight (10-fold difference); growth at 24.8 dS·m-1 = 0.11 to 0.64 g; growth at 33.1 dS·m-1 = 0.09 to 0.54 g; growth at 41.4 dS·m-1 = 0.06 to 0.35 g; threshold ECW = 3.9 to 12.3 dS·m-1; ECw25 % = 14 to 38 dS·m-1; ECw50% = 22 to 43 dS·m-1; and LF40 = 7% to 41%. Results in this study indicated substantial genetic-based variation in salt tolerance within seashore paspalums. When evaluation of salt tolerance based on shoot responses is attempted at wide salinity levels up to 40 dS·m-1, all seven criteria exhibiting a significant F test can be used. Five entries (SI 92, SI 93-1, SI 91, SI 93-2, SI 89) were ranked in the top statistical grouping for all seven-growth parameters, followed by SI 90 ranked in six out of seven, and three paspalums (SI 94-1, `Sea Isle 1', and `Taliaferro') were ranked in five out of seven categories.


Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 203
Author(s):  
Denisa Avdouli ◽  
Johannes F. J. Max ◽  
Nikolaos Katsoulas ◽  
Efi Levizou

In a cascade hydroponic system, the used nutrient solution drained from a primary crop is directed to a secondary crop, enhancing resource-use efficiency while minimizing waste. Nevertheless, the inevitably increased EC of the drainage solution requires salinity-tolerant crops. The present study explored the salinity-tolerance thresholds of basil to evaluate its potential use as a secondary crop in a cascade system. Two distinct but complemented approaches were used; the first experiment examined basil response to increased levels of salinity (5, 10 and 15 dS m−1, compared with 2 dS m−1 of control) to identify the limits, and the second experiment employed a cascade system with cucumber as a primary crop to monitor basil responses to the drainage solution of 3.2 dS m−1. Growth, ascorbate content, nutrient concentration, and total amino acid concentration and profile were determined in both experiments. Various aspects of basil growth and biochemical performance collectively indicated the 5 dS m−1 salinity level as the upper limit/threshold of tolerance to stress. Higher salinity levels considerably suppressed fresh weight production, though the total concentration of amino acids showed a sevenfold increase under 15 dS m−1 and 4.5-fold under 5 and 10 dS m−1 compared to the control. The performance of basil in the cascade system was subject to a compromise between a reduction of fresh produce and an increase of total amino acids and ascorbate content. This outcome indicated that basil performed well under the conditions and the system employed in the present study, and might be a good candidate for use as a secondary crop in cascade-hydroponics systems.


Author(s):  
F. G. T. Holliday ◽  
J. H. S. Blaxter

The salinity tolerance of herring 9-ca 24 cm in length was found to lie between 6‰0 and 40–45‰0.Determinations of changes in weight and blood concentration (by measurement of the freezing-point), when herring were transferred from one salinity to another, demonstrated that extensive changes occurred in the blood. Under these conditions the herring experienced and survived blood concentrations equivalent to salinites of 13–22·5‰. A recovery to near normal (δ0·95 ≡ 15·8‰) took place in all the salinities within the tolerance range.Badly descaled herring in sea water showed large increases in blood concentration before death.A study of the kidney of the herring indicated that the ability to withstand the low salinities for long periods probably rested in the high glomerular count of the kidney.The importance of damage to the skin for survival is discussed in relation to tagging experiments.The results are also discussed in relation to the evolution of the herring.


Sign in / Sign up

Export Citation Format

Share Document