scholarly journals The evolution of alternative splicing in Drosophila

2016 ◽  
Author(s):  
Lauren Gibilisco ◽  
Qi Zhou ◽  
Shivani Mahajan ◽  
Doris Bachtrog

Alternative pre-mRNA splicing (“AS”) greatly expands proteome diversity, but little is known about the evolutionary landscape of AS in Drosophila, and how it differs between embryonic and adult stages, or males and females. Here we study the transcriptome from several tissues and developmental stages in males and females from four species across the Drosophila genus. We find that 20-37% of multi-exon genes are alternatively spliced. While males generally express a larger number of genes, AS is more prevalent in females, suggesting that the sexes adopt different expression strategies for their specialized function. While the number of total genes expressed increases during early embryonic development, the proportion of expressed genes that are alternatively spliced is highest in the very early embryo, before the onset of zygotic transcription. This indicates that females deposit a diversity of isoforms into the egg, consistent with abundant AS found in ovary. Cluster analysis by gene expression levels (“GE”) show mostly stage-specific clustering in embryonic samples, and tissue-specific clustering in adult tissues. Clustering embryonic stages and adult tissues based on AS profiles results in stronger species-specific clustering, and over development, samples segregate by developmental stage within species. Most sex-biased AS found in flies is due to AS in gonads, with little sex-specific splicing in somatic tissues.

2021 ◽  
Author(s):  
Shatabdi Paul ◽  
Md Kawsar Khan ◽  
Marie E. Herberstein

AbstractThe prevalence and intensity of parasitism can have different fitness costs between sexes, and across species and developmental stages. This variation could arise because of species specific sexual and developmental differences in body condition, immunity, and resistance. Theory predicts that the prevalence of parasitism will be greater in individuals with poor body condition and the intensity of parasitism will be greater in individuals with larger body size. These predictions have been tested and verified in vertebrates. In insects, however, contradictory evidence has been found in different taxa. Here, we tested these predictions on two species of Agriocnemis (Agriocnemis femina and Agriocnemis pygmaea) damselflies, which are parasitized by Arrenurus water mite ectoparasites. We measured body weight, total body length, abdomen area and thorax area of non-parasitized damselflies and found body condition varied between males and females, between immature females and mature females and between A. femina and A. pygmaea. Then, we calculated the parasite prevalence, i.e., the frequency of parasitism and intensity, i.e., the number of parasites per infected damselfly in eleven natural populations of both species. In line to our predictions, we observed greater prevalence in immature females than mature females but found no difference in parasite prevalence between males and females. Furthermore, we found that parasite load was higher in females than males and in immature females than mature females. Our result also showed that the frequency and intensity of parasitism varied between the two studied species, being higher in A. pygmaea than A. femina. Our study provides evidence that parasitism impacts sexes, developmental stages and species differentially and suggests that variation may occur due to sex, developmental stage, and species-specific resistance and tolerance mechanism.


2021 ◽  
Author(s):  
Mukulika Ray ◽  
Ashley Mae Conard ◽  
Jennifer Urban ◽  
Erica Larschan

Maternally deposited RNAs and proteins play a crucial role in initiating zygotic transcription during early embryonic development. However, the mechanisms by which maternal factors regulate zygotic transcript diversity early in development remain poorly understood. Furthermore, how early in development sex-specific transcript diversity occurs is not known genome-wide in any organism. Here, we determine that sex-specific transcript diversity occurs much earlier in development than previously thought in Drosophila, concurrent with Zygotic genome activation (ZGA). We use genetic, biochemical, and genomic approaches to demonstrate that the essential maternally-deposited pioneer factor CLAMP (Chromatin linked adapter for MSL proteins) is a key regulator of sex-specific transcript diversity in the early embryo via the following mechanisms: 1) In both sexes, CLAMP directly binds to the gene bodies of female and male sex-specifically spliced genes. 2) In females, CLAMP modulates chromatin accessibility of an alternatively-spliced exon within Sex-lethal, the master regulator of sex determination, to promote protein production. 3) In males, CLAMP regulates Maleless (MLE) distribution, a spliceosome component to prevent aberrant sex-specific splicing. Thus, we demonstrate for the first time how a maternal factor regulates early zygotic transcriptome diversity sex-specifically. We also developed a new tool to measure how splicing changes over time called time2splice.


Author(s):  
Lucia De Marchi ◽  
Carlo Pretti ◽  
Alessia Cuccaro ◽  
Matteo Oliva ◽  
Federica Tardelli ◽  
...  

AbstractThe phylum Porifera and their symbionts produce a wide variety of bioactive compounds, playing a central role in their ecology and evolution. In this study, four different extracts (obtained by non-polar and semi-polar extraction methodologies) of the Mediterranean sponge Ircinia oros were tested through a multi-bioassay integrated approach to assess their antifouling potential. Tests were performed using three common species, associated with three different endpoints: the marine bacterium Aliivibrio fischeri (inhibition of bioluminescence), the marine diatom Phaeodactylum tricornutum (inhibition of growth), and different development stages of the brackish water serpulid Ficopomatus enigmaticus (gametes: sperm motion, vitality inhibition and cellular damage; larvae: development; adults: AChE (acetylcholinesterase)-inhibitory activity). The effects of extracts were species specific and did not vary among different extraction methodologies. In particular, no significant reduction of bioluminescence of A. fischeri was observed for all tested samples. By contrast, extracts inhibited P. tricornutum growth and had toxic effects on different F. enigmaticus’ developmental stages. Our results suggest that the proposed test battery can be considered a suitable tool as bioactivity screening of marine natural products.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


1965 ◽  
Vol 26 (3) ◽  
pp. 937-958 ◽  
Author(s):  
Shuichi Karasaki

The site of H3-uridine incorporation and the fate of labeled RNA during early embryo-genesis of the newt Triturus pyrrhogaster were studied with electron microscopic autoradiography. Isolated ectodermal and mesodermal tissues from the embryos were treated in H3-uridine for 3 hours and cultured in cold solution for various periods before fixation with OsO4 and embedding in Epon. At the blastula stage, the only structural component of the nucleus seen in electron micrographs is a mass of chromatin fibrils. At the early gastrula stage, the primary nucleoli originate as small dense fibrous bodies within the chromatin material. These dense fibrous nucleoli enlarge during successive developmental stages by the acquisition of granular components 150 A in diameter, which form a layer around them. Simultaneously larger granules (300 to 500 A) appear in the chromatin, and they fill the interchromatin spaces by the tail bud stage. Autoradiographic examination has demonstrated that nuclear RNA synthesis takes place in both the nucleolus and the chromatin, with the former consistently showing more label per unit area than the latter. When changes in the distribution pattern of radioactivity were studied 3 to 24 hours after immersion in isotope at each developmental stage, the following results were obtained. Labeled RNA is first localized in the fibrous region of the nucleolus and in the peripheral region of chromatin material. After longer culture in non-radioactive medium, labeled materials also appear in the granular region of the nucleolus and in the interchromatin areas. Further incubation gives labeling in cytoplasm.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 319-331 ◽  
Author(s):  
Stefan Bauersachs ◽  
Susanne E Ulbrich ◽  
Karin Gross ◽  
Susanne E M Schmidt ◽  
Heinrich H D Meyer ◽  
...  

The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. This study investigated transcriptome profiles of endometrium samples from day 18 pregnant vs non-pregnant heifers to get insight into the molecular mechanisms involved in conditioning the endometrium for embryo attachment and implantation. Using a combination of subtracted cDNA libraries and cDNA array hybridisation, 109 mRNAs with at least twofold higher abundance in endometrium of pregnant animals and 70 mRNAs with higher levels in the control group were identified. Among the mRNAs with higher abundance in pregnant animals, at least 41 are already described as induced by interferons. In addition, transcript levels of many new candidate genes involved in the regulation of transcription, cell adhesion, modulation of the maternal immune system and endometrial remodelling were found to be increased. The different expression level was confirmed with real-time PCR for nine genes. Localisation of mRNA expression in the endometrium was shown byin situhybridisation forAGRN,LGALS3BP,LGALS9,USP18,PARP12andBST2. A comparison with similar studies in humans, mice, and revealed species-specific and common molecular markers of uterine receptivity.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Michael J Prigge ◽  
Matthieu Platre ◽  
Nikita Kadakia ◽  
Yi Zhang ◽  
Kathleen Greenham ◽  
...  

The TIR1/AFB auxin co-receptors mediate diverse responses to the plant hormone auxin. The Arabidopsis genome encodes six TIR1/AFB proteins representing three of the four clades that were established prior to angiosperm radiation. To determine the role of these proteins in plant development we performed an extensive genetic analysis involving the generation and characterization of all possible multiply-mutant lines. We find that loss of all six TIR1/AFB proteins results in early embryo defects and eventually seed abortion, and yet a single wild-type allele of TIR1 or AFB2 is sufficient to support growth throughout development. Our analysis reveals extensive functional overlap between even the most distantly related TIR1/AFB genes except for AFB1. Surprisingly, AFB1 has a specialized function in rapid auxin-dependent inhibition of root growth and early phase of root gravitropism. This activity may be related to a difference in subcellular localization compared to the other members of the family.


Author(s):  
Chenyan Shi ◽  
Lu Zhao ◽  
Evans Atoni ◽  
Weifeng Zeng ◽  
Xiaomin Hu ◽  
...  

AbstractMosquitoes belonging to the genus Aedes can efficiently transmit many pathogenic arboviruses, placing a great burden on public health worldwide. In addition, they also carry a number of insect specific viruses (ISVs), and it was recently suggested that some of these ISVs might form a stable species-specific “core virome” in mosquito populations. However, little is known about such a core virome in laboratory colonies and if it is present across different developmental stages. In this study, we compared the viromes in eggs, larvae, pupae and adults of Aedes albopictus mosquitoes collected from the field as well as from a lab colony. The virome in lab-derived Ae. albopictus is very stable across all stages, consistent with a vertical transmission route of these viruses, forming a “vertically transmitted core virome”. The different stages of field collected Ae. albopictus mosquitoes also contains this stable vertically transmitted core virome as well as another set of viruses shared by mosquitoes across different stages, which might be an “environment derived core virome”. Both these vertically and environmentally transmitted core viromes in Ae. albopictus deserve more attention with respect to their effects on vector competence for important medically relevant arboviruses. To further study this core set of ISVs, we screened 46 publically available SRA viral metagenomic dataset of mosquitoes belonging to the genus Aedes. Some of the identified core ISVs are identified in the majority of SRAs. In addition, a novel virus, Aedes phasmavirus, is found to be distantly related to Yongsan bunyavirus 1, and the genomes of the core virus Phasi Charoen-like phasivirus is highly prevalent in the majority of the tested samples, with nucleotide identities ranging from 94% to 99%. Finally, Guadeloupe mosquito virus, and some related viruses formed three separated phylogenetic clades. How these core ISVs influence the biology of mosquito host, arboviruses infection and evolution deserve to be further explored.


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 159-169 ◽  
Author(s):  
G. Levi ◽  
B. Gumbiner ◽  
J.P. Thiery

A vast amount of experimental evidence suggests that cell surface molecules involved in cell-to-cell and/or cell-to-substrate interactions participate in the control of basic events in morphogenesis. E-cadherin is a cell adhesion molecule directly implicated in the control of Ca2(+)-dependent interactions between epithelial cells. We report here the patterns of expression of E-cadherin in developmental stages of Xenopus laevis ranging from early embryo to adult using immunofluorescence microscopy. Although its distribution shares some similarities with those of L-CAM in the chicken and E-cadherin/Uvomorulin in the mouse, the distribution of E-cadherin in Xenopus presents several peculiar and unique features. In early stages of Xenopus development, E-cadherin is not expressed. The molecule is first detectable in the ectoderm of late gastrulas (stage 13-13.5 NF). At this time both the external and the sensory layer of the nonneural ectoderm accumulate high levels of E-cadherin while the ectoderm overlying the neural plate and regions of the involuting marginal zone (IMZ) not yet internalized by the movements of gastrulation are E-cadherin-negative. Unlike most other species, endodermal cells express no or very low levels of E-cadherin up to stage 20 NF. Endodermal cells become strongly E-cadherin-positive only when a well-differentiated epithelium forms in the gut. No mesodermal structures are stained during early development. In the placodes, in contrast to other species, E-cadherin disappears very rapidly after placode thickening. During further embryonic development E-cadherin is present in the skin, the gut epithelium, the pancreas, many monostratified epithelia and most glands. Hepatocytes are stained weakly while most other tissues, including the pronephros, are negative. In the mesonephros, the Wolffian duct and some tubules are positive. During metamorphosis a profound restructuring of the body plan takes place under the control of thyroid hormones, which involves the degeneration and subsequent regeneration of several tissues such as the skin and the gut. All newly formed epithelia express high levels of E-cadherin. Surprisingly, degenerating epithelia of both skin and intestine maintain high levels of the protein even after starting to become disorganized and to degenerate. In the adult, staining is strong in the skin, the glands, the lungs, the gut epithelium and the pancreas, weak in the liver and absent from most other tissues. Our results show that the expression of E-cadherin in Xenopus is strongly correlated with the appearance of differentiated epithelia.


Development ◽  
1983 ◽  
Vol 77 (1) ◽  
pp. 167-182
Author(s):  
Giorgio Graziosi ◽  
Franco de Cristini ◽  
Angelo di Marcotullio ◽  
Roberto Marzari ◽  
Fulvio Micali ◽  
...  

The early embryo of Drosophila melanogaster did not survive treatment at 37 °C (heat shock) for 25 min. The histological analysis of eggs treated in this way showed that the heat shock caused disintegration of nuclei and of cytoplasmic islands, displacement and swelling of nuclei and blocked mitoses. These effects were not observed in embryos treatedafter blastoderm formation. After this stage, we noticed that development was slowed down. The heat shock proteins (hsp 83,70 and 68) were, under shock, synthesized at all developmental stages. There was little or no synthesis of hsp 70 and 68 in unfertilized eggs, but synthesis increased in proportion to the number of nuclei present. Most probably, hsp 70 synthesis was directed by zygotic mRNA. DNA synthesis was not blocked by the heat shock though the overall incorporation of [3H]thymidine was substantially reduced, presumably because of the block of mitoses. We did not find a direct relation between survival pattern and hsp synthesis. We concluded that some, at least, of the heat shock genes can be activated at all developmental stages and that heat shock could be used for synchronizing mitoses.


Sign in / Sign up

Export Citation Format

Share Document