scholarly journals Operant Behavior in Model Systems

2016 ◽  
Author(s):  
Bjöern Brembs

AbstractIn contrast to the long-held assumption that the organization of behavior is best characterized as the perception of a sensory stimulus followed by appropriate response (i.e., “sensorimotor hypothesis”), recent converging evidence from multiple systems and fields of study instead suggests that both ancestral and extant general brain function is best described in operant terms. Rather than specifyng precise behaviors, sensory information - if at all present - interacts with ongoing neural activity to instruct the organism which type of spontaneous, exploratory behavior to generate. Evaluating the ensuing reafferent feedback modifies the nervous system such that ongoing neural activity patterns become biased towards activity that has generated increased appetitive and decreased aversive feedback in the past. The neurobiological mechanisms underlying both the exploratory, spontaneous behaviors as well as those underlying the modifications caused by the feedback are becoming increasingly understood, even on a molecular level. It is straightforward to hypothesize that the constant interaction between ongoing neural activity and the incoming sensory stream allows the organism to balance behavioral flexibility with efficiency to accomplish adaptive behavioral choice in an often unpredictably changing environment.

2020 ◽  
Author(s):  
Jingfeng Zhou ◽  
Wenhui Zong ◽  
Chunying Jia ◽  
Matthew P.H. Gardner ◽  
Geoffrey Schoenbaum

AbstractThe orbitofrontal cortex (OFC) has been proposed to encode expected outcomes, which is thought to be important for outcome-directed behavior. However, such neural encoding can also often be explained by the recall of information about the recent past. To dissociate the retrospective and prospective aspects of encoding in the OFC, we designed a non-spatial, continuous, alternating odor-sequence task that mimicked a continuous T-maze. The task consisted of two alternating sequences of four odor-guided trials (2 sequences × 4 positions). In each trial, rats were asked to make a “go” or “no-go” action based on a fixed odor-reward contingency. Odors at both the first and last positions were distinct across the two sequences, such that they resembled unique paths in the past and future, respectively; odors at positions in between were the same and thus resembled a common path. We trained classifiers using neural activity to distinguish between either sequences or positions and asked whether the neural activity patterns in the common path were more like the ones in the past or the future. We found a proximal prospective code for sequence information as well as a distal prospective code for positional information, the latter of which was closely associated with rats’ ability to predict future outcomes. This study demonstrates a prospective behaviorally-relevant predictive code in rat OFC.


Author(s):  
Martina Valente ◽  
Giuseppe Pica ◽  
Caroline A. Runyan ◽  
Ari S. Morcos ◽  
Christopher D. Harvey ◽  
...  

The spatiotemporal structure of activity in populations of neurons is critical for accurate perception and behavior. Experimental and theoretical studies have focused on “noise” correlations – trial-to-trial covariations in neural activity for a given stimulus – as a key feature of population activity structure. Much work has shown that these correlations limit the stimulus information encoded by a population of neurons, leading to the widely-held prediction that correlations are detrimental for perceptual discrimination behaviors. However, this prediction relies on an untested assumption: that the neural mechanisms that read out sensory information to inform behavior depend only on a population’s total stimulus information independently of how correlations constrain this information across neurons or time. Here we make the critical advance of simultaneously studying how correlations affect both the encoding and the readout of sensory information. We analyzed calcium imaging data from mouse posterior parietal cortex during two perceptual discrimination tasks. Correlations limited the ability to encode stimulus information, but (seemingly paradoxically) correlations were higher when mice made correct choices than when they made errors. On a single-trial basis, a mouse’s behavioral choice depended not only on the stimulus information in the activity of the population as a whole, but unexpectedly also on the consistency of information across neurons and time. Because correlations increased information consistency, sensory information was more efficiently converted into a behavioral choice in the presence of correlations. Given this enhanced-by-consistency readout, we estimated that correlations produced a behavioral benefit that compensated or overcame their detrimental information-limiting effects. These results call for a re-evaluation of the role of correlated neural activity, and suggest that correlations in association cortex can benefit task performance even if they decrease sensory information.


2019 ◽  
Author(s):  
Daniel J. Gale ◽  
Corson N. Areshenkoff ◽  
Claire Honda ◽  
Ingrid S. Johnsrude ◽  
J. Randall Flanagan ◽  
...  

AbstractIt is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed two human functional MRI studies involving separate delayed movement tasks and focused on pre-movement neural activity in early auditory cortex, given its direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1, and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is represented in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.


2021 ◽  
Author(s):  
João D. Semedo ◽  
Anna I. Jasper ◽  
Amin Zandvakili ◽  
Amir Aschner ◽  
Christian K. Machens ◽  
...  

AbstractBrain function relies on the coordination of activity across multiple, recurrently connected, brain areas. For instance, sensory information encoded in early sensory areas is relayed to, and further processed by, higher cortical areas and then fed back. However, the way in which feedforward and feedback signaling interact with one another is incompletely understood. Here we investigate this question by leveraging simultaneous neuronal population recordings in early and midlevel visual areas (V1-V2 and V1-V4). Using a dimensionality reduction approach, we find that population interactions are feedforward-dominated shortly after stimulus onset and feedback-dominated during spontaneous activity. The population activity patterns most correlated across areas were distinct during feedforward- and feedback-dominated periods. These results suggest that feedforward and feedback signaling rely on separate “channels”, such that feedback signaling does not directly affect activity that is fed forward.


Author(s):  
Noam Sagiv ◽  
Monika Sobczak-Edmans ◽  
Adrian L. Williams

Defining synaesthesia has proven to be a challenging task as the number of synaesthesia variants and associated phenomena reported by synaesthetes has increased over the past decade or so. This chapter discusses the inclusion of non-sensory concurrents in the category of synaesthesia. For example, many grapheme-colour synaesthetes also attribute gender and personality to letters and numbers consistently and involuntarily. Here we assess the question of including synaesthetic personification as a type of synaesthesia. We also discuss the relationship between synaesthetic personification and other instances of personification and mentalizing. We hope to convince readers that whether or not they embrace atypical forms of personification as a synaesthesia variant, studying the phenomenon is a worthwhile effort that could yield novel insights into human cognition and brain function.


1976 ◽  
Vol 9 (3) ◽  
pp. 311-375 ◽  
Author(s):  
Werner Reichardt ◽  
Tomaso Poggio

An understanding of sensory information processing in the nervous system will probably require investigations with a variety of ‘model’ systems at different levels of complexity.Our choice of a suitable model system was constrained by two conflicting requirements: on one hand the information processing properties of the system should be rather complex, on the other hand the system should be amenable to a quantitative analysis. In this sense the fly represents a compromise.In these two papers we explore how optical information is processed by the fly's visual system. Our objective is to unravel the logical organization of the fly's visual system and its underlying functional and computational principles. Our approach is at a highly integrative level. There are different levels of analysing and ‘understanding’ complex systems, like a brain or a sophisticated computer.


2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140172 ◽  
Author(s):  
Marcus E. Raichle

Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.


Author(s):  
Max A. Betjes ◽  
Xuan Zheng ◽  
Rutger N. U. Kok ◽  
Jeroen S. van Zon ◽  
Sander J. Tans

Organoids have emerged as powerful model systems to study organ development and regeneration at the cellular level. Recently developed microscopy techniques that track individual cells through space and time hold great promise to elucidate the organizational principles of organs and organoids. Applied extensively in the past decade to embryo development and 2D cell cultures, cell tracking can reveal the cellular lineage trees, proliferation rates, and their spatial distributions, while fluorescent markers indicate differentiation events and other cellular processes. Here, we review a number of recent studies that exemplify the power of this approach, and illustrate its potential to organoid research. We will discuss promising future routes, and the key technical challenges that need to be overcome to apply cell tracking techniques to organoid biology.


Sign in / Sign up

Export Citation Format

Share Document