scholarly journals Single variant bottleneck in the early dynamics ofH. influenzaebacteremia in neonatal rats questions the theory of independent action

2016 ◽  
Author(s):  
Xinxian Shao ◽  
Bruce Levin ◽  
Ilya Nemenman

AbstractThere is an abundance of information about the genetic basis, physiological and molecular mechanisms of bacterial pathogenesis. In contrast, relatively little is known about population dynamic processes, by which bacteria colonize hosts and invade tissues and cells and thereby cause disease. In an article published in 1978, Moxon and Murphy presented evidence that, when inoculated intranasally with a mixture streptomycin sensitive and resistant (SmSand SmR) and otherwise isogenic stains ofHaemophilus influenzaetype b (Hib), neonatal rats develop a bacteremic infection that often is dominated by only one strain, SmSor SmR. After rulling out other possibilities through years of related experiments, the field seems to have settled on a plausible explanation for this phenomenon: the first bacterium to invade the host activates the host immune response that ‘shuts the door’ on the second invading strain. To explore this hypothesis in a necessarily quantitative way, we modeled this process with a set of mixed stochastic and deterministic differential equations. Our analysis of the properties of this model with realistic parameters suggests that this hypothesis cannot explain the experimental results of Moxon and Murphy, and in particular the observed relationship between the frequency of different types of blood infections (bacteremias) and the inoculum size. We propose modifications to the model that come closer to explaining these data. However, the modified and better fitting model contradicts the common theory of independent action of individual bacteria in establishing infections. We discuss the implications of these results.

1996 ◽  
Vol 16 (02) ◽  
pp. 114-138 ◽  
Author(s):  
R. E. Scharf

SummarySpecific membrane glycoproteins (GP) expressed by the megakaryocyte-platelet system, including GPIa-lla, GPIb-V-IX, GPIIb-llla, and GPIV are involved in mediat-ing platelet adhesion to the subendothelial matrix. Among these glycoproteins, GPIIb-llla plays a pivotal role since platelet aggregation is exclusively mediated by this receptor and its interaction with soluble macromolecular proteins. Inherited defects of the GPIIb-llla or GPIb-V-IX receptor complexes are associated with bleeding disorders, known as Glanzmann's thrombasthenia, Bernard-Soulier syndrome, or platelet-type von Willebrand's disease, respectively. Using immuno-chemical and molecular biology techniques, rapid advances in our understanding of the molecular genetic basis of these disorders have been made during the last few years. Moreover, analyses of patients with congenital platelet membrane glycoprotein abnormalities have provided valuable insights into molecular mechanisms that are required for structural and functional integrity, normal biosynthesis of the glycoprotein complexes and coordinated membrane expression of their constituents. The present article reviews the current state of knowledge of the major membrane glycoproteins in health and disease. The spectrum of clinical bleeding manifestations and established diagnostic criteria for each of these dis-orders are summarized. In particular, the variety of molecular defects that have been identified so far and their genetic basis will be discussed.


2020 ◽  
Vol 75 (3) ◽  
pp. 204-213
Author(s):  
Varvara A. Ryabkova ◽  
Leonid P. Churilov ◽  
Yehuda Shoenfeld

The pathogenesis of autoimmune diseases is very complex and multi-factorial. The concept of Mosaics of Autoimmunity was introduced to the scientific community 30 years ago by Y. Shoenfeld and D.A. Isenberg, and since then new tiles to the puzzle are continuously added. This concept specifies general pathological ideas about the multifactorial threshold model for polygenic inheritance with a threshold effect by the action of a number of external causal factors as applied to the field of autoimmunology. Among the external factors that can excessively stimulate the immune system, contributing to the development of autoimmune reactions, researchers are particularly interested in chemical substances, which are widely used in pharmacology and medicine. In this review we highlight the autoimmune dynamics i.e. a multistep pathogenesis of autoimmune diseases and the subsequent development of lymphoma in some cases. In this context several issues are addressed namely, genetic basis of autoimmunity; environmental immunostimulatory risk factors; gene/environmental interaction; pre-clinical autoimmunity with the presence of autoantibodies; and the mechanisms, underlying lymphomagenesis in autoimmune pathology. We believe that understanding the common model of the pathogenesis of autoimmune diseases is the first step to their successful management.


2019 ◽  
Vol 14 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Cong Tang ◽  
Guodong Zhu

The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.


2020 ◽  
Vol 21 (21) ◽  
pp. 8151
Author(s):  
Sharda Kumari ◽  
Shibani Mukherjee ◽  
Debapriya Sinha ◽  
Salim Abdisalaam ◽  
Sunil Krishnan ◽  
...  

Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. eaba6605 ◽  
Author(s):  
Pierre-Marc Delaux ◽  
Sebastian Schornack

During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today’s continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Fabrizio Gardoni ◽  
Jennifer Stanic ◽  
Diego Scheggia ◽  
Alberto Benussi ◽  
Barbara Borroni ◽  
...  

The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors.


2021 ◽  
Vol 14 (2) ◽  
pp. 92
Author(s):  
Panagiotis Gklinos ◽  
Miranta Papadopoulou ◽  
Vid Stanulovic ◽  
Dimos D. Mitsikostas ◽  
Dimitrios Papadopoulos

Over the last 30 years the role of monoclonal antibodies in therapeutics has increased enormously, revolutionizing treatment in most medical specialties, including neurology. Monoclonal antibodies are key therapeutic agents for several neurological conditions with diverse pathophysiological mechanisms, including multiple sclerosis, migraines and neuromuscular disease. In addition, a great number of monoclonal antibodies against several targets are being investigated for many more neurological diseases, which reflects our advances in understanding the pathogenesis of these diseases. Untangling the molecular mechanisms of disease allows monoclonal antibodies to block disease pathways accurately and efficiently with exceptional target specificity, minimizing non-specific effects. On the other hand, accumulating experience shows that monoclonal antibodies may carry class-specific and target-associated risks. This article provides an overview of different types of monoclonal antibodies and their characteristics and reviews monoclonal antibodies currently in use or under development for neurological disease.


2019 ◽  
Vol 24 ◽  
pp. 121-128
Author(s):  
Sigal Ben-Zaken ◽  
Yoav Meckel ◽  
Dan Nemet ◽  
Alon Eliakim

The ACSL A/G polymorphism is associated with endurance trainability. Previous studies have demonstrated that homozygotes of the minor AA allele had a reduced maximal oxygen consumption response to training compared to the common GG allele homozygotes, and that the ACSL A/G single nucleotide polymorphism explained 6.1% of the variance in the VO2max response to endurance training. The contribution of ACSL single nucleotide polymorphism to endurance trainability was shown in nonathletes, however, its potential role in professional athletes is not clear. Moreover, the genetic basis to anaerobic trainability is even less studied. Therefore, the aim of the present study was to examine the prevalence of ACSL single nucleotide polymorphism among professional Israeli long distance runners (n=59), middle distance runners (n=31), sprinters and jumpers (n=48) and non-athletic controls (n=60). The main finding of the present study was that the ACSL1 AA genotype, previously shown to be associated with reduced endurance trainability, was not higher among sprinters and jumpers (15%) compared to middle- (16%) and long-distance runners (15%). This suggests that in contrast to previous studies indicating that the ACSL1 single nucleotide polymorphism may influence endurance trainability among non-athletic individuals, the role of this polymorphism among professional athletes is still not clear.


Author(s):  
J. N. Carruthers

In July–August of three different years common surface-floating bottles were set adrift at International Station E2 (49° 27' N.—4° 42' W.). With them, various types of drag-fitted bottles were also put out. The journeys accomplished are discussed, and the striking differences as between year and year in the case of the common surface floaters, and as between the different types in the same year, are commented upon in the light of the prevailing winds. An inter-relationship of great simplicity is deduced between wind speed and the rate of travel of simple surface floating bottles up-Channel and across the North Sea from the results of experiments carried out in four different summers.


Sign in / Sign up

Export Citation Format

Share Document