scholarly journals Patterns of thaumarchaeal gene expression in culture and diverse marine environments

2017 ◽  
Author(s):  
Paul Carini ◽  
Christopher L. Dupont ◽  
Alyson E. Santoro

AbstractThaumarchaea are ubiquitous in marine habitats where they participate in carbon and nitrogen cycling. Although metatranscriptomes suggest thaumarchaea are active microbes in marine waters, we understand little about how thaumarchaeal gene expression patterns relate to substrate utilization and activity. Here, we report the global transcriptional response of the marine ammonia-oxidizing thaumarchaeon ‘CandidatusNitrosopelagicus brevis’ str. CN25 to ammonia limitation using RNA-Seq. We further describe the genome and transcriptome ofCa. N. brevis str. U25, a new strain capable of urea utilization. Ammonia limitation in CN25 resulted in reduced expression of transcripts coding for ammonia oxidation proteins, and increased expression of a gene coding an Hsp20-like chaperone. Despite significantly different transcript abundances across treatments, two ammonia monooxygenase subunits (amoAB), a nitrite reductase (nirK), and both ammonium transporter genes were always among the most abundant transcripts, regardless of growth state.Ca. N. brevis str. U25 cells expressed a urea transporter 139-fold more than the urease catalytic subunitureC. Gene co-expression networks derived from culture transcriptomes and ten thaumarchaea-enriched metatranscriptomes revealed a high degree of correlated gene expression across disparate environmental conditions and identified a module of genes, includingamoABCandnirK, that we hypothesize to represent the core ammonia oxidation machinery.Originality-Significance StatementDiscovering gene function in fastidious or uncultivated lineages remains one of the biggest challenges in environmental microbiology. Here, we use an approach that combines controlled laboratory experiments within situtranscript abundance data from the environment to identify genes that share similar transcription patterns in marine ammonia-oxidizing thaumarchaea. These findings demonstrate how transcriptomes from microbial cultures can be used together with complex environmental samples to identify suites of co-expressed genes that are otherwise enigmatic and provide new insights into the mechanism of ammonia oxidation. Our results add to the growing body of literature showing that relatively small changes in transcript abundance are linked to large changes in growth in organisms with reduced genomes, suggesting they have limited capacity for metabolic regulation or that they rely on mechanisms other than transcriptional regulation to deal with a fluctuating environment.

2020 ◽  
Vol 16 (6) ◽  
pp. 20200078
Author(s):  
Maria Stager ◽  
Zachary A. Cheviron

Endotherms defend their body temperature in the cold by employing shivering (ST) and/or non-shivering thermogenesis (NST). Although NST is well documented in mammals, its importance to avian heat generation is unclear. Recent work points to a prominent role for the sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) in muscular NST. SERCA's involvement in both ST and NST, however, posits a tradeoff between these two heat-generating mechanisms. To explore this tradeoff, we assayed pectoralis gene expression of adult songbirds exposed to chronic temperature acclimations. Counter to mammal models, we found that cold-acclimated birds downregulated the expression of sarcolipin ( SLN ), a gene coding for a peptide that promotes heat generation by uncoupling SERCA Ca 2+ transport from ATP hydrolysis, indicating a reduced potential for muscular NST. We also found differential expression of many genes involved in Ca 2+ cycling and muscle contraction and propose that decreased SLN could promote increased pectoralis contractility for ST. Moreover, SLN transcript abundance negatively correlated with peak oxygen consumption under cold exposure (a proxy for ST) across individuals, and higher SLN transcript abundance escalated an individual's risk of hypothermia in acute cold. Our results therefore suggest that SLN-mediated NST may not be an important mechanism of—and could be a hindrance to—avian thermoregulation in extreme cold.


2018 ◽  
Author(s):  
Yiru A. Wang ◽  
Basten L. Snoek ◽  
Mark G. Sterken ◽  
Joost A.G. Riksen ◽  
Jana J. Stastna ◽  
...  

AbstractAccumulation of protein aggregates is a major cause of Parkinson’s disease (PD), a progressive neurodegenerative condition that is one of the most common causes of dementia. Transgenic Caenorhabditis elegans worms expressing the human synaptic protein α-synuclein show inclusions of aggregated protein and replicate the defining pathological hallmarks of PD. It is however not known how PD progression and pathology differs among individual genetic backgrounds. Here, we compared gene expression patterns, and investigated the phenotypic consequences of transgenic α-synuclein expression in five different C. elegans genetic backgrounds. Transcriptome analysis indicates that the effects of -synuclein expression on pathways associated with nutrient storage, lipid transportation and ion exchange depend on the genetic background. The gene expression changes we observe suggest that a range of phenotypes will be affected by α-synuclein expression. We experimentally confirm this, showing that the transgenic lines generally show delayed development, reduced lifespan, and an increased rate of matricidal hatching. These phenotypic effects coincide with the core changes in gene expression, linking developmental arrest, mobility, metabolic and cellular repair mechanisms to α-synuclein expression. Together, our results show both genotype-specific effects and core alterations in global gene expression and in phenotype in response to -synuclein. We conclude that the PD effects are substantially modified by the genetic background, illustrating that genetic background mechanisms should be elucidated to understand individual variation in PD.


2021 ◽  
Author(s):  
Sharvari Narendra ◽  
Claudia Klengel ◽  
Bilal Hamzeh ◽  
Drasti Patel ◽  
Joy Otten ◽  
...  

AbstractAlcohol intake progressively increases after prolonged consumption of alcohol, but relatively few new therapeutics targeting development of alcohol use disorder (AUD) have been validated. Here, we conducted a genome-wide RNA-sequencing (RNA-seq) analysis in mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, a brain area previously implicated in alcohol drinking and seeking, demonstrating distinct gene expression patterns and canonical pathways induced by both acute and chronic intake. Surprisingly, both drinking modes triggered similar transcriptional changes, including up-regulation of ribosome-related/translational pathways and myelination pathways, and down-regulation of chromatin binding and histone modification. Notably, multiple genes that were significantly regulated in mouse amygdala with alcohol drinking, including Atp2b1, Slc4a7, Nfkb1, Nts, and Hdac2, among others had previously been associated with human AUD via GWAS or other genomic studies. In addition, analyses of hub genes and upstream regulatory pathways predicted that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and oligodendrocyte-related transcriptional factor, Sox17.Overall, our results suggest that the transcriptional landscape in the central and basolateral subnuclei of the amygdala is sensitive to voluntary alcohol drinking. They provide a unique resource of gene expression data for future translational studies examining transcriptional mechanisms underlying the development of AUD due to alcohol consumption.


2009 ◽  
Vol 191 (22) ◽  
pp. 6855-6864 ◽  
Author(s):  
Paul E. Carlson ◽  
Joseph Horzempa ◽  
Dawn M. O'Dee ◽  
Cory M. Robinson ◽  
Panayiotis Neophytou ◽  
...  

ABSTRACT Tularemia is caused by the category A biodefense agent Francisella tularensis. This bacterium is associated with diverse environments and a plethora of arthropod and mammalian hosts. How F. tularensis adapts to these different conditions, particularly the eukaryotic intracellular environment in which it replicates, is poorly understood. Here, we demonstrate that the polyamines spermine and spermidine are environmental signals that alter bacterial stimulation of host cells. Genomewide analysis showed that F. tularensis LVS undergoes considerable changes in gene expression in response to spermine. Unexpectedly, analysis of gene expression showed that multiple members of two classes of Francisella insertion sequence (IS) elements, ISFtu1 and ISFtu2, and the genes adjacent to these elements were induced by spermine. Spermine was sufficient to activate transcription of these IS elements and of nearby genes in broth culture and in macrophages. Importantly, the virulent strain of F. tularensis, Schu S4, exhibited similar phenotypes of cytokine induction and gene regulation in response to spermine. Distinctions in gene expression changes between Schu S4 and LVS at one orthologous locus, however, correlated with differences in IS element location. Our results indicate that spermine and spermidine are novel triggers to alert F. tularensis of its eukaryotic host environment. The results reported here also identify an unexpected mechanism of gene regulation controlled by a spermine-responsive promoter contained within IS elements. Different arrangements of these mobile genetic elements among Francisella strains may contribute to virulence by conveying new expression patterns for genes from different strains.


2006 ◽  
Vol 188 (2) ◽  
pp. 399-408 ◽  
Author(s):  
Jennifer A. Loughman ◽  
Michael Caparon

ABSTRACT For a pathogen such as Streptococcus pyogenes, ecological success is determined by its ability to sense the environment and mount an appropriate adaptive transcriptional response. Thus, determining conditions for analyses of gene expression in vitro that are representative of the in vivo environment is critical for understanding the contributions of transcriptional response pathways to pathogenesis. In this study, we determined that the gene encoding the SpeB cysteine protease is up-regulated over the course of infection in a murine soft-tissue model. Conditions were identified, including growth phase, acidic pH, and an NaCl concentration of <0.1 M, that were required for expression of speB in vitro. Analysis of global expression profiles in response to these conditions in vitro identified a set of coregulated genes whose expression patterns showed a significant correlation with that of speB when examined during infection of murine soft tissues. This analysis revealed that a culture medium that promotes high levels of SpeB expression in vitro produced an expression profile that showed significant correlation to the profile observed in vivo. Taken together, these studies establish culture conditions that mimic in vivo expression patterns; that growth phase, pH, and NaCl may mimic relevant cues sensed by S. pyogenes during infection; and that identification of other environmental cues that alter expression of speB in vitro may provide insight into the signals that direct global patterns of gene expression in vivo.


2009 ◽  
Vol 31 (1) ◽  
pp. 270-280 ◽  
Author(s):  
Anderson C. José ◽  
Wilco Ligterink ◽  
Antonio Claudio Davide ◽  
Edvaldo A. Amaral da Silva ◽  
Henk W.M. Hilhorst

Seeds of Magnolia ovata were dried to different water contents to assess the viability and transcript abundance of genes related to seed development, cell cycle, cytoskeleton and desiccation tolerance.The expression of development, cell cycle and cytoskeleton relative genes (ABI3, CDC2-like and ACT2) alone could not explain the germination behaviour of M. ovata seeds in relation to drying damage. Irrespective of their initial water content, the seeds performed in the same way during the initial period of germination and the deleterious effects of desiccation only occurred in later stages. Expression of PKABA1, sHSP17.5 and 2-Cys-PRX did not show a relationship with desiccation. However, the expression patterns of PKABA1 and sHSP17.5 suggested the participation of these genes in protective mechanisms during the imbibition of M. ovata seeds.


2020 ◽  
Author(s):  
Anna Radlicka ◽  
Kinga Kamińska ◽  
Malgorzata Borczyk ◽  
Marcin Piechota ◽  
Michał Korostyński ◽  
...  

AbstractThe development of Parkinson’s disease (PD) causes dysfunction of the frontal cortex, which contributes to hallmark motor symptoms and is regarded as one of the primary causes of the affective and cognitive impairments observed in PD. Treatment with L-DOPA alleviates motor symptoms but has mixed efficacy in restoring normal cognitive functions, which is further complicated by the psychoactive effects of the drug. In this study, we investigated how L-DOPA affects gene expression in the frontal cortex in an animal model of unilateral PD. We performed an RNA-seq analysis of gene expression in the frontal cortex of rats with 6-hydroxydopamine (6-OHDA)-induced unilateral dopaminergic lesion that were treated with L-3,4-dihydroxyphenylalanine (L-DOPA), for 2 weeks. We used analysis of variance to identify differentially expressed genes and found 48 genes with significantly altered transcript abundance after L-DOPA treatment. We also performed a weighted gene coexpression network analysis (WGCNA), which resulted in the detection of 5 modules consisting of genes with similar expression patterns. The analyses led to three primary observations. First, the changes in gene expression induced by L-DOPA were bilateral, although only one hemisphere was lesioned. Second, the changes were not restricted to neurons but also appeared to emerge in immune or endothelial cells. Finally, comparisons with databases of drug-induced gene expression signatures revealed multiple nonspecific effects, which indicates that a part of the observed response is a common pattern activated by multiple types of pharmaceuticals in different target tissues. Taken together, our results identify cellular mechanisms in the frontal cortex that are involved in the response to L-DOPA treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shigeyuki Magi ◽  
Sewon Ki ◽  
Masao Ukai ◽  
Elisa Domínguez-Hüttinger ◽  
Atsuhiko T Naito ◽  
...  

AbstractCancer cells acquire drug resistance through the following stages: nonresistant, pre-resistant, and resistant. Although the molecular mechanism of drug resistance is well investigated, the process of drug resistance acquisition remains largely unknown. Here we elucidate the molecular mechanisms underlying the process of drug resistance acquisition by sequential analysis of gene expression patterns in tamoxifen-treated breast cancer cells. Single-cell RNA-sequencing indicates that tamoxifen-resistant cells can be subgrouped into two, one showing altered gene expression related to metabolic regulation and another showing high expression levels of adhesion-related molecules and histone-modifying enzymes. Pseudotime analysis showed a cell transition trajectory to the two resistant subgroups that stem from a shared pre-resistant state. An ordinary differential equation model based on the trajectory fitted well with the experimental results of cell growth. Based on the established model, it was predicted and experimentally validated that inhibition of transition to both resistant subtypes would prevent the appearance of tamoxifen resistance.


2021 ◽  
Author(s):  
Shigeyuki Magi ◽  
Sewon Ki ◽  
Masao Ukai ◽  
Elisa Domínguez-Hüttinger ◽  
Atsuhiko Naito ◽  
...  

Abstract Cancer cells acquire drug resistance through the following nonresistant, pre-resistant, and resistant stages. Although the molecular mechanism of drug resistance is well investigated, the process of drug resistance acquisition remains largely unknown. Here we elucidate the molecular mechanisms underlying the process of drug resistance acquisition by sequential analysis of gene expression patterns in tamoxifen-treated breast cancer cells. Single-cell RNA-sequencing indicates that tamoxifen-resistant cells can be subgrouped into two, one showing altered gene expression related to metabolic regulation. The other showed high expression levels of adhesion-related molecules and histone-modifying enzymes. Pseudotime analysis showed a cell transition trajectory to the two resistant subgroups that stem from a shared pre-resistant state. An ordinary differential equation model based on the trajectory fitted well with the experimental results of cell growth. Based on the established model, it was predicted and experimentally validated that inhibition of transition to both resistant subtypes would prevent the appearance of tamoxifen resistance.


Sign in / Sign up

Export Citation Format

Share Document