scholarly journals Which are major players, canonical or non-canonical strigolactones?

2017 ◽  
Author(s):  
Koichi Yoneyama ◽  
Xiaonan Xie ◽  
Kaori Yoneyama ◽  
Takaya Kisugi ◽  
Takahito Nomura ◽  
...  

Strigolactones (SLs) can be classified into two structurally distinct groups: canonical and non-canonical SLs. Canonical SLs contain the ABCD ring system, and non-canonical SLs lack the A, B, or C ring but have the enol ether–D ring moiety which is essential for biological activities. The simplest non-canonical SL is the SL biosynthetic intermediate carlactone (CL). In plants, CL and its oxidized metabolites such as carlactonoic acid and methyl carlactonoate, are present in root and shoot tissues. In some plant species including black oat (Avena strigosa), sunflower (Helianthus annuus), and maize (Zea mays), non-canonical SLs are major germination stimulants in the root exudates. Various plant species such as tomato (Solanum lycopersicum) release carlactonoic acid, and poplar (Populus spp.) was found to exude methyl carlactonoate into the rhizosphere. These results suggest that both canonical and non-canonical SLs are active as host recognition signals in the rhizosphere. In contrast, limited distribution of canonical SLs in the plant kingdom and structure- and stereo-specific transportation of canonical SLs from roots to shoots suggest that plant hormones inhibiting shoot branching are not canonical SLs but are rather non-canonical SLs.


2019 ◽  
Vol 16 (11) ◽  
pp. 898-905
Author(s):  
Harun Patel ◽  
Rahul Pawara ◽  
Sanjay Surana

Quinazoline is the six-membered heterocyclic ring system reported for its versatile biological activities. This characteristic feature of quinazoline makes it a good template for a lead generation library. Ring opening is one of the major concerns in the synthesis of quinazolin-4(3H)-one that results in diamide formation. Here, alternative fusion strategy is reported, which is a time-saving and costeffective method to overcome the ring opening problem associated with the synthesis of benzo[ d][1,3]oxazin-4-one and quinazolin-4(3H)-one.





2019 ◽  
Vol 16 (3) ◽  
pp. 342-368 ◽  
Author(s):  
Ramandeep Kaur ◽  
Yagyesh Kapoor ◽  
Sundeep K. Manjal ◽  
Ravindra K. Rawal ◽  
Kapil Kumar

The furo [2,3-b] indoline ring system is one of the most important structural units in various natural products. It has been known to have inherent biological activities and is utilized as a synthetic target for a number of natural compounds; therefore, this has contributed to a great demand for the growth of synthetic methods for this ring system. Most important compounds with furoindoline ring system are physovenine, madindoline A and B and makomotindoline etc. These compounds are well known to exhibit biological activity against different diseases such as glaucoma, cancer, cachexia, Castleman’s disease, rheumatoid arthritis, etc. The current article focuses on various synthetic approaches for furoindoline containing compounds and essential furoindoline moiety, such as oxindole-5-O-tetrahydropyranyl ether route etc., and various other diastereoand enantio- controlled approach in a very concise way.



2021 ◽  
Vol 17 ◽  
Author(s):  
Nidhi Kala ◽  
Kalpana Praveen Rahate

: Triazole is the main five-membered Nitrogen-containing basic heterocyclic ring system reported for their biological activities and compounds with multiple pharmacophores, which fetch together acquaintance of a target with sympathetic types of the molecule that might interact with the target. In addition, healthy, adaptable, and scalable chemistry must be employed to achieve the task. This characteristic feature of triazole would make a good template for a lead cohort library. The current review article focuses on recent advancements in triazole moiety as an anti-cancer agent with their mechanism pathways of synthesized analogues.







Author(s):  
Ruth Adefolakemi Gabriel-Ajobiewe ◽  
Blessing Mosope Gabriel ◽  
Mojisola Christiana Cyril-Olutayo ◽  
Felix O. Olorunmola ◽  
Kehinde Temitope Adegbehingbe

Background: Bambusa vulgaris (bamboo) is a common plant in tropical regions of the world, with multiple biological activities. Cereal steep liquors have been identified to act against some fecal bacteria. Given the increasing prevalence of antimicrobial resistance coupled with the cost of antibiotics, there is a need for mitigation efforts and the shift by locals to herbal products. Methods: The factorial study design was employed. Bamboo leaves were washed, dried, milled, and soxhlet extracted for 16 h using the steep fermented liquor from Zea mays subsp. mays as the solvent. Rotary evaporated extracts of various weights were used to carry out sensitivity and minimum inhibitory concentration (MIC) tests. Oral acute toxicity was determined. The in vivo assay was used to determine the effective dosage for the treatment of infected mice while distilled water and ciprofloxacin served as negative and positive controls, respectively. Results: The average inhibition zone diameters in the sensitivity test at 25, 50, and 100 mg/mL concentrations were 16.20 ± 0.06 mm, 19.10 ± 0.02 mm, and 22.10 ± 0.05 mm, respectively, while the MIC against Salmonella typhi was 25 mg/mL. The extract was found to be safe at up to 5000 mg/kg dose, which means that the LD50 was ≥ 3808 mg/kg. The Widal test revealed that mice responded to treatment with the extract at different concentrations (50, 100, and 200 mg/mL) as the number of days increased. The in vivo assay on day 14 showed the bactericidal property at a dosage of 200 mg/mL. Conclusions: Bamboo leaves extract in steep liquor from fermented yellow maize displayed excellent pharmacological activity against the pathogenic organism of typhoid fever with a potential source of active agents.



2020 ◽  
Vol 36 (6) ◽  
pp. 1001-1015
Author(s):  
Nadia Ali Ahmed Elkanzi

Nitrogen containing synthetically and biologically important heterocyclic ring system namely pyrimidine possess both biological and pharmacological activities, and defend as aromatic six heterocyclic with 1and 3 nitrogen atom in ring. Preparation of pyrimidine via different methods offer its importance in fields of medicinal chemistry and Chemistry. Pyrimidines and their derivatives act as anti-inflammatory, anti-malaria, anti-tumor, cardiovascular agents, anti-neoplastic, anti-tubercular, anti- HIV, diuretic ,anti-viral, anti-microbial, ,analgesic .This review give light up on biological and pharmacological activities of pyrimidine nucleus.



2000 ◽  
Vol 24 (1) ◽  
pp. 153-159 ◽  
Author(s):  
C. N. Gonçalves ◽  
C. A. Ceretta ◽  
C. J. Basso

Em condições naturais, o solo encontra-se em equilíbrio, mas o manejo inadequado causa degradação, principalmente da fração orgânica, comprometendo a sustentabilidade de sistemas agrícolas. Este trabalho, realizado num experimento de seis anos em Argissolo Vermelho-Amarelo (Hapludalf), localizado na área experimental do Departamento de Solos da Universidade Federal de Santa Maria (RS), teve como objetivo avaliar a influência de cinco sucessões de culturas no nitrogênio do solo, sob plantio direto. Foram implantadas as sucessões de culturas ervilhaca comum (Vicia sativa )/milho (Zea mays), tremoço azul (Lupinus angustifolius)/milho, ervilha forrageira (Pisum arvense)/milho, aveia-preta (Avena strigosa)/milho e pousio/milho, associadas a duas doses de N aplicadas no milho (0 e 80 kg ha-1). O solo foi manejado em plantio direto e foram feitas avaliações dos teores de N das plantas de cobertura e dos resíduos vegetais superficiais, bem como do nitrogênio do solo (total, mineral e orgânico), em três profundidades (0-2,5; 2,5-7,5 e 7,5-17,5 cm). As avaliações das plantas de cobertura de solo no inverno foram realizadas nas subparcelas sem aplicação de N mineral. Os resultados mostraram que a introdução de plantas de cobertura de solo, sob plantio direto, durante seis anos, promoveu acúmulos significativos de nitrogênio mineral, orgânico e total no solo e apresentaram diferenças entre as sucessões de culturas, apenas na camada de 0-2,5 cm. A sucessão tremoço azul/milho destacou-se pela capacidade de promover acréscimos de nitrogênio no solo.



2021 ◽  
Author(s):  
Wenyin Wang ◽  
Tianhua Jia ◽  
Tianyun Qi ◽  
Shanshan Li ◽  
Degen A.Allan ◽  
...  

Abstract Background The interaction between rhizosphere microorganisms and rhizosphere exudates is considered a ‘novel weapon’ for poisonous plants’ colonization, but the relationship between them in facilitating the expansion of poisonous plants in degraded or barren land is poorly understood. We examined this relationship in different degradation levels of alpine grasslands on the Tibetan plateau (3,700 m a.s.l) by determining the composition of root exudates, soil physical and chemical properties, rhizosphere microbial diversity and carbon metabolism of the main poisonous and non-poisonous plant species. Results Soil nutrients, including total organic carbon, total nitrogen and available phosphorous, diversity of microorganisms and microbial carbon metabolism were greater in the rhizosphere of poisonous than in non-poisonous plant species (P < 0.05). The distribution of bacteria and root exudates were plant species specific. Soil microbial communities were affected by habitat and plant species in degraded grassland, and more so for bacteria than fungi. The cell growth and death pathway for the poisonous species Ligularia virgaurea was greater than for other poisonous species (P < 0.05), and the difference increased with an increase in grassland degradation and a decrease in soil nutrients (P < 0.05), which could explain how L. virgaurea became the dominant poisonous species in degraded alpine grassland. The roots of L. virgaurea exudated such compounds as alkaloids, lupinic acid, terpenes, artemisinin, and coumarin, which were correlated positively with different bacteria in different habitats. Conclusion It was concluded that poisonous plant species adapted to degraded grassland through the interaction of root exudates and rhizosphere microorganisms, which facilitated their expansion in degraded alpine grassland.



Sign in / Sign up

Export Citation Format

Share Document