scholarly journals Dynamics of diffusive cell signaling relays

Author(s):  
Paul B. Dieterle ◽  
Jiseon Min ◽  
Daniel Irimia ◽  
Ariel Amir

Cells can communicate with each other by emitting diffusible signaling molecules into the surrounding environment. However, simple diffusion is slow. Even small molecules take hours to diffuse millimeters away from their source, making it difficult for thousands of cells to coordinate their activity over millimeters, as happens routinely during development and immune response. Moreover, simple diffusion creates shallow, Gaussian-tailed concentration profiles. Attempting to move up or down such shallow gradients – to chemotax – is a difficult task for cells, as they see only small spatial and temporal concentration changes. Here, we demonstrate that cells utilizing diffusive relays, in which the presence of one type of diffusible signaling molecule triggers participation in the emission of the same type of molecule, can propagate fast-traveling diffusive waves that give rise to steep chemical gradients. Our methods are general and capture the effects of dimensionality, cell density, signaling molecule degradation, pulsed emission, and cellular chemotaxis on the diffusive wave dynamics. We show that system dimensionality – the size and shape of the extracellular medium and the distribution of the cells within it – can have a particularly dramatic effect on wave initiation and asymptotic propagation, and that these dynamics are insensitive to the details of cellular activation. As an example, we show that neutrophil swarming experiments exhibit dynamical signatures consistent with the proposed signaling motif. Interpreted in the context of these experiments, our results provide insight into the utility of signaling relays in immune response.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Paul B Dieterle ◽  
Jiseon Min ◽  
Daniel Irimia ◽  
Ariel Amir

In biological contexts as diverse as development, apoptosis, and synthetic microbial consortia, collections of cells or subcellular components have been shown to overcome the slow signaling speed of simple diffusion by utilizing diffusive relays, in which the presence of one type of diffusible signaling molecule triggers participation in the emission of the same type of molecule. This collective effect gives rise to fast-traveling diffusive waves. Here, in the context of cell signaling, we show that system dimensionality – the shape of the extracellular medium and the distribution of cells within it – can dramatically affect the wave dynamics, but that these dynamics are insensitive to details of cellular activation. As an example, we show that neutrophil swarming experiments exhibit dynamical signatures consistent with the proposed signaling motif. We further show that cell signaling relays generate much steeper concentration profiles than does simple diffusion, which may facilitate neutrophil chemotaxis.


2021 ◽  
Vol 22 (12) ◽  
pp. 6644
Author(s):  
Xupeng Zang ◽  
Ting Gu ◽  
Wenjing Wang ◽  
Chen Zhou ◽  
Yue Ding ◽  
...  

Due to the high rate of spontaneous abortion (SAB) in porcine pregnancy, there is a major interest and concern on commercial pig farming worldwide. Whereas the perturbed immune response at the maternal–fetal interface is an important mechanism associated with the spontaneous embryo loss in the early stages of implantation in porcine, data on the specific regulatory mechanism of the SAB at the end stage of the implantation remains scant. Therefore, we used high-throughput sequencing and bioinformatics tools to analyze the healthy and arresting endometrium on day 28 of pregnancy. We identified 639 differentially expressed lncRNAs (DELs) and 2357 differentially expressed genes (DEGs) at the end stage of implantation, and qRT-PCR was used to verify the sequencing data. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and immunohistochemistry analysis demonstrated weaker immune response activities in the arresting endometrium compared to the healthy one. Using the lasso regression analysis, we screened the DELs and constructed an immunological competitive endogenous RNA (ceRNA) network related to SAB, including 4 lncRNAs, 11 miRNAs, and 13 genes. In addition, Blast analysis showed the applicability of the constructed ceRNA network in different species, and subsequently determined HOXA-AS2 in pigs. Our study, for the first time, demonstrated that the SAB events at the end stages of implantation is associated with the regulation of immunobiological processes, and a specific molecular regulatory network was obtained. These novel findings may provide new insight into the possibility of increasing the litter size of sows, making pig breeding better and thus improving the efficiency of animal husbandry production.


Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
Viveshree S. Govender ◽  
Saiyur Ramsugit ◽  
Manormoney Pillay

Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.


1971 ◽  
Vol 49 (1) ◽  
pp. 74-77 ◽  
Author(s):  
M. Cowie ◽  
Harry Watts

The binary gaseous diffusion coefficients of air with methane, methyl chloride, methylene chloride, chloroform, and carbon tetrachloride at 298.2 °K and 1 atm have been determined. A simple diffusion cell was used, in which concentration changes of the diffusing gas were followed by infrared spectrophotometry.


2011 ◽  
Vol 1 (5) ◽  
pp. 1-2
Author(s):  
Lavkush Dwivedi

Infectious diseases and consequent immune imbalancesare major constraint in human health managementthroughout the world. However, in recentdecades enormous efforts have been made to elucidatethe immunomodulatory approaches againstinfectious diseases. Immunomodulation is a therapeuticapproach in which we try to intervene inauto regulating processes of the defense system toadjust the immune response at a desired level.The present special issue on cutting edge issues inImmunomodulation like Immune stimulation, Immunesuppression, Immune potentiating and immunereinforcement summarizes our current understandingof this complex mosaic. The accompanyingselection of recent articles from across theworld provides further insight into this topic. 


Parasitology ◽  
1984 ◽  
Vol 88 (4) ◽  
pp. 665-675
Author(s):  
J.G. Howard

The following brief survey considers various manoeuvres which can be applied to manipulate the immune response to parasitic infectionsin vivo. The examples quoted largely concern malaria, babesiosis, schistosomiasis and leishmaniasis, predominantly in inbred mouse strains. Since my own relevant research experience has been restricted to leishmaniasis, this will receive undue emphasis, although it does illustrate particularly well points I wish to stress. The types of intervention described do not all provide the precision of interpretation with which they are sometimes credited. Thus, effects of immunosuppression or T-cell depletion alone can usually only implicate the specific immune response (in its broad sense) in shaping the natural history and outcome of an infection or in underlying the effect of prophylactic immunization. Nevertheless, more precise delineation of lymphocyte subset involvement can be obtained by cell replacement studies in some of these models or by exclusion of antibody. The outcomes of these approaches have been (or are) predictable in most cases. More fascinating, however, are the various instances which will be stressed where totally unpredicted and contrary observations have been made which led (or may lead) to fresh insight into the disease. These serendipitous findings illustrate at the same time the value of applying the manoeuvres, even though they imply that the logical immunologist cannot yet always outsmart the parasite by design.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3102
Author(s):  
Kathleen M. Capaccione ◽  
Mikhail Doubrovin ◽  
Nikunj Bhatt ◽  
Akiva Mintz ◽  
Andrei Molotkov

The human immune system is a complex system which protects against invaders and maintains tissue homeostasis. It is broadly divided into the innate and adaptive branches. Granzyme B is serine protease that plays an important role in both and can serve as a biomarker for cellular activation. Because of this, a granzyme B PET agent (GZP) has recently been developed and has been shown to be able to monitor response to immunotherapy. Here, we evaluated the utility of granzyme B PET imaging to assess the innate immune response. We subcutaneously administered LPS to mice to induce inflammation and performed granzyme B PET imaging after 24 and 120 h. We dissected out tissue in the region of injection and performed granzyme B immunofluorescence (IF) to confirm specificity of the GZP radiotracer. Granzyme B PET imaging demonstrated increased uptake in the region of LPS injection after 24 h, which normalized at 120 h. Granzyme B immunofluorescence showed specific staining in tissue from the 24 h time point compared to the PBS-injected control. These findings support the use of granzyme B PET for imaging innate immunity. In certain clinical contexts, the use of GZP PET imaging may be superior to currently available agents, and we therefore suggest further preclinical studies with the ultimate goal of translation to clinical use.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 836
Author(s):  
Eileen A. Moran ◽  
Susan R. Ross

Retroviruses are major causes of disease in animals and human. Better understanding of the initial host immune response to these viruses could provide insight into how to limit infection. Mouse retroviruses that are endemic in their hosts provide an important genetic tool to dissect the different arms of the innate immune system that recognize retroviruses as foreign. Here, we review what is known about the major branches of the innate immune system that respond to mouse retrovirus infection, Toll-like receptors and nucleic acid sensors, and discuss the importance of these responses in activating adaptive immunity and controlling infection.


2017 ◽  
Vol 9 (11) ◽  
pp. 4162-4164
Author(s):  
Donovan Watza ◽  
Kristen S. Purrington ◽  
Kang Chen ◽  
Ann G. Schwartz

2020 ◽  
pp. 110439 ◽  
Author(s):  
Andy Goren ◽  
Flavio Adsuara Cadegiani ◽  
Carlos Gustavo Wambier ◽  
Sergio Vano-Galvan ◽  
Antonella Tosti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document