scholarly journals Oxygen-generated spatial distribution of cell population links to p53 status

2019 ◽  
Author(s):  
Shashank Taxak ◽  
Uttam Pati

ABSTRACTLow oxygen induces wild type p53 inactivation and selects for mutant-like p53 phenotypes for aggressive tumor growth. Recently, we have shown wild type p53 as a cellular oxygen-sensor that operates in switch-like fashion to transform its characters of a tumor suppressor or promoter in a gradient of hypoxia. However, it is unclear how hypoxic tumors select for wild type p53 phenotypes for oxygen-sensitive responses. Here, we show that oxygen-generated spatial distribution of the cell population induces p53 phenotype-specific survival or death. We have found that a dynamic state of spatial scatters or clustering patterns of cell populations favor the survival of wild type more than the mutant phenotypes in a wide range of oxygen fluctuation by affecting p53 subcellular localization. Our results demonstrate how spatial distribution could function to establish wild type p53-mediated oxygen sensing and cell fate decisions in a cell population with heterogeneous p53 allele status. We anticipate that such behavior of cells in a gradient of oxygen can be utilized by the hypoxic tumors to maintain distinct p53 alleles and determine the release and metastasis of single or clustered circulating tumor cells (CTCs).Summary sentenceOxygen variation results in p53 phenotype-specific cell fate via the spatial distribution pattern of the cell population

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yu Fang ◽  
Angelina Olegovna Zekiy ◽  
Farhoodeh Ghaedrahmati ◽  
Anton Timoshin ◽  
Maryam Farzaneh ◽  
...  

AbstractThe family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions.


2021 ◽  
Vol 22 (13) ◽  
pp. 6857
Author(s):  
Samantha Bruno ◽  
Manuela Mancini ◽  
Sara De Santis ◽  
Cecilia Monaldi ◽  
Michele Cavo ◽  
...  

Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Julien Hurbain ◽  
Darka Labavić ◽  
Quentin Thommen ◽  
Benjamin Pfeuty

Abstract Fractional killing illustrates the cell propensity to display a heterogeneous fate response over a wide range of stimuli. The interplay between the nonlinear and stochastic dynamics of biochemical networks plays a fundamental role in shaping this probabilistic response and in reconciling requirements for heterogeneity and controllability of cell-fate decisions. The stress-induced fate choice between life and death depends on an early adaptation response which may contribute to fractional killing by amplifying small differences between cells. To test this hypothesis, we consider a stochastic modeling framework suited for comprehensive sensitivity analysis of dose response curve through the computation of a fractionality index. Combining bifurcation analysis and Langevin simulation, we show that adaptation dynamics enhances noise-induced cell-fate heterogeneity by shifting from a saddle-node to a saddle-collision transition scenario. The generality of this result is further assessed by a computational analysis of a detailed regulatory network model of apoptosis initiation and by a theoretical analysis of stochastic bifurcation mechanisms. Overall, the present study identifies a cooperative interplay between stochastic, adaptation and decision intracellular processes that could promote cell-fate heterogeneity in many contexts.


Blood ◽  
2007 ◽  
Vol 110 (10) ◽  
pp. 3610-3617 ◽  
Author(s):  
Jens Köditz ◽  
Jutta Nesper ◽  
Marieke Wottawa ◽  
Daniel P. Stiehl ◽  
Gieri Camenisch ◽  
...  

Abstract The activating transcription factor-4 (ATF-4) is translationally induced under anoxic conditions, mediates part of the unfolded protein response following endoplasmic reticulum (ER) stress, and is a critical regulator of cell fate. Here, we identified the zipper II domain of ATF-4 to interact with the oxygen sensor prolyl-4-hydroxylase domain 3 (PHD3). The PHD inhibitors dimethyloxalylglycine (DMOG) and hypoxia, or proteasomal inhibition, all induced ATF-4 protein levels. Hypoxic induction of ATF-4 was due to increased protein stability, but was independent of the ubiquitin ligase von Hippel–Lindau protein (pVHL). A novel oxygen-dependent degradation (ODD) domain was identified adjacent to the zipper II domain. Mutations of 5 prolyl residues within this ODD domain or siRNA-mediated down-regulation of PHD3, but not of PHD2, was sufficient to stabilize ATF-4 under normoxic conditions. These data demonstrate that PHD-dependent oxygen-sensing recruits both the hypoxia-inducible factor (HIF) and ATF-4 systems, and hence not only confers adaptive responses but also cell fate decisions.


1997 ◽  
Vol 17 (5) ◽  
pp. 2806-2815 ◽  
Author(s):  
M Pariat ◽  
S Carillo ◽  
M Molinari ◽  
C Salvat ◽  
L Debüssche ◽  
...  

p53 is a short-lived transcription factor that is frequently mutated in tumor cells. Work by several laboratories has already shown that the ubiquitin-proteasome pathway can largely account for p53 destruction, at least under specific experimental conditions. We report here that, in vitro, wild-type p53 is a sensitive substrate for milli- and microcalpain, which are abundant and ubiquitous cytoplasmic proteases. Degradation was dependent on p53 protein conformation. Mutants of p53 with altered tertiary structure displayed a wide range of susceptibility to calpains, some of them being largely resistant to degradation and others being more sensitive. This result suggests that the different mutants tested here adopt slightly different conformations to which calpains are sensitive but that cannot be discriminated by using monoclonal antibodies such as PAb1620 and PAb240. Inhibition of calpains by using the physiological inhibitor calpastatin leads to an elevation of p53 steady-state levels in cells expressing wild-type p53. Conversely, activation of calpains by calcium ionophore led to a reduction of p53 in mammalian cells, and the effect was blocked by cell-permeant calpain inhibitors. Cotransfection of p53-null cell lines with p53 and calpastatin expression vectors resulted in an increase in p53-dependent transcription activity. Taken together, these data support the idea that calpains may also contribute to the regulation of wild-type p53 protein levels in vivo.


Blood ◽  
2021 ◽  
Author(s):  
Julie A I Thoms ◽  
Peter Truong ◽  
Shruthi Subramanian ◽  
Kathy Knezevic ◽  
Gregory Harvey ◽  
...  

Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesised that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, RUNX1) bind key hematopoietic genes in human CD34+ haematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal haematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. Here, we integrated bulk and single cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and in leukemic cells. The heptad factors GATA2, TAL1 and ERG formed an integrated sub-circuit that regulates stem cell to erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits could be harnessed to promote specific cell type transitions and overcome dysregulated haematopoiesis.


Development ◽  
1998 ◽  
Vol 125 (8) ◽  
pp. 1397-1406 ◽  
Author(s):  
S.L. Amacher ◽  
C.B. Kimmel

Cell fate decisions in early embryonic cells are controlled by interactions among developmental regulatory genes. Zebrafish floating head mutants lack a notochord; instead, muscle forms under the neural tube. As shown previously, axial mesoderm in floating head mutant gastrulae fails to maintain expression of notochord genes and instead expresses muscle genes. Zebrafish spadetail mutant gastrulae have a nearly opposite phenotype; notochord markers are expressed in a wider domain than in wild-type embryos and muscle marker expression is absent. We examined whether these two phenotypes revealed an antagonistic genetic interaction by constructing the double mutant. Muscle does not form in the spadetail;floating head double mutant midline, indicating that spadetail function is required for floating head mutant axial mesoderm to transfate to muscle. Instead, the midline of spadetail;floating head double mutants is greatly restored compared to that of floating head mutants; the floor plate is almost complete and an anterior notochord develops. In addition, we find that floating head mutant cells can make both anterior and posterior notochord when transplanted into a wild-type host, showing that enviromental signals can override the predisposition of floating head mutant midline cells to make muscle. Taken together, these results suggest that repression of spadetail function by floating head is critical to promote notochord fate and prevent midline muscle development, and that cells can be recruited to the notochord by environmental signals.


1997 ◽  
Vol 8 (2) ◽  
pp. 303-312 ◽  
Author(s):  
S A Louis ◽  
G B Spiegelman ◽  
G Weeks

It has been previously demonstrated that the expression of an activated rasD gene in wild-type Dictyostelium cells results in formation of aggregates with multitips, instead of the normal single tips, and a block in further development. In an attempt to better understand the role of activated RasD development, we examined cell-type-specific gene expression in a strain stably expressing high levels of RasD[G12T]. We found that the expression of prestalk cell-specific genes ecmA and tagB was markedly enhanced, whereas the expression of the prespore cell-specific gene cotC was reduced to very low levels. When the fate of cells in the multitipped aggregate was monitored with an ecmA/lacZ fusion, it appeared that most of the cells eventually adopted prestalk gene expression characteristics. When mixtures of the [G12T]rasD cells and Ax3 cells were induced to differentiate, chimeric pseudoplasmodia were not formed. Thus, although the [G12T]rasD transformant had a marked propensity to form prestalk cells, it could not supply the prestalk cell population when mixed with wild-type cells. Both stalk and spore cell formation occurred in low cell density monolayers of the [G12T]rasD strain, suggesting that at least part of the inhibition of stalk and spore formation during multicellular development involved inhibitory cell interactions within the cell mass. Models for the possible role of rasD in development are discussed.


2018 ◽  
Author(s):  
Jonathon M. Carthy ◽  
Marilia Ioannou ◽  
Vasso Episkopou

AbstractHow cells assess levels of signaling and select to transcribe different target genes depending on the levels of activated effectors remains elusive. High NODAL-signalling levels specify anterior/head, lower specify posterior, and complete loss abolishes anterior-posterior patterning in the mammalian embryo. Here we show that cells assess NODAL-activated SMAD2 and SMAD3 (SMAD2/3) effector-levels by complex formation and pairing each effector with the co-repressor SNON, which is present in the cell before signaling. These complexes enable the E3-ubiquitin ligase Arkadia (RNF111) to degrade SNON. High SMAD2/3 levels can saturate and remove SNON, leading to derepression and activation of a subset of targets (high targets) that are highly susceptible to SNON repression. However, low SMAD2/3 levels can only reduce SNON preventing derepression/activation of high targets. Arkadia degrades SNON transiently only upon signaling exposure, leading to dynamic signaling-responses, which most likely initiate level-specific cell-fate decisions. Arkadia-null mouse embryos and Embryonic Stem Cells (ESC) cannot develop anterior tissues and head. However, SnoN/Arkadia, double-null embryos and ESCs are rescued confirming that Arkadia removes SNON, to achieve level-dependent cell-fatesOne Sentence SummarySignaling intensity induces equivalent degradation of a transcriptional repressor leading to level-dependent responses.


Sign in / Sign up

Export Citation Format

Share Document