scholarly journals NOTCH inhibition promotes myoblast fusion by releasing HEYL repression on TMEM8C regulatory regions in foetal skeletal muscles

2020 ◽  
Author(s):  
Joana Esteves de Lima ◽  
Cédrine Blavet ◽  
Marie-Ange Bonnin ◽  
Estelle Hirsinger ◽  
Emmanuelle Havis ◽  
...  

AbstractDifferentiation and fusion are two intricate processes involved in skeletal muscle development. The close association of differentiation and fusion makes it difficult to address the process of fusion independently of differentiation. Using the fusion marker myomaker, named TMEM8C in chicken, we found that both TMEM8C transcripts and the differentiated and fusion-competent MYOG+ cells are preferentially regionalized in the central regions of limb foetal muscles in chicken embryos. Because the NOTCH signalling pathway is a potent inhibitor of muscle differentiation during developmental myogenesis, NOTCH function in myoblast fusion was not addressed so far. We analysed the consequences of NOTCH inhibition for myoblast fusion and TMEM8C expression during foetal myogenesis using in vitro and in vivo chicken systems. NOTCH inhibition following chicken embryo immobilisation or in myoblast cultures increased TMEM8C expression and myoblast fusion. Moreover, we showed that NOTCH inhibition induced the un-binding of the HEYL transcriptional repressor from the TMEM8C regulatory regions in limb muscles and myoblast cultures. These results identify a molecular mechanism underlying the fusion-promoting effect of NOTCH-inhibition during foetal myogenesis.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pengfei Liu ◽  
Jing Yuan ◽  
Yetong Feng ◽  
Xin Chen ◽  
Guangsuo Wang ◽  
...  

AbstractFerroptosis is a novel type of programmed cell death, which is different from apoptosis and autophagic cell death. Recently, ferroptosis has been indicated to contribute to the in vitro neurotoxicity induced by isoflurane, which is one of the most common anesthetics in clinic. However, the in vivo position of ferroptosis in isoflurane-induced neurotoxicity as well as learning and memory impairment remains unclear. In this study, we mainly explored the relationship between ferroptosis and isoflurane-induced learning and memory, as well as the therapeutic methods in mouse model. Our results indicated that isoflurane induced the ferroptosis in a dose-dependent and time-dependent manner in hippocampus, the organ related with learning and memory ability. In addition, the activity of cytochrome c oxidase/Complex IV in mitochondrial electron transport chain (ETC) was increased by isoflurane, which might further contributed to cysteine deprivation-induced ferroptosis caused by isoflurane exposure. More importantly, isoflurane-induced ferroptosis could be rescued by both ferroptosis inhibitor (ferrostatin-1) and mitochondria activator (dimethyl fumarate), which also showed effective therapeutic action against isoflurane-induced learning and memory impairment. Taken together, our data indicate the close association among ferroptosis, mitochondria and isoflurane, and provide a novel insight into the therapy mode against isoflurane-induced learning and memory impairment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julie Melendez ◽  
Daniel Sieiro ◽  
David Salgado ◽  
Valérie Morin ◽  
Marie-Julie Dejardin ◽  
...  

AbstractFusion of nascent myoblasts to pre-existing myofibres is critical for skeletal muscle growth and repair. The vast majority of molecules known to regulate myoblast fusion are necessary in this process. Here, we uncover, through high-throughput in vitro assays and in vivo studies in the chicken embryo, that TGFβ (SMAD2/3-dependent) signalling acts specifically and uniquely as a molecular brake on muscle fusion. While constitutive activation of the pathway arrests fusion, its inhibition leads to a striking over-fusion phenotype. This dynamic control of TGFβ signalling in the embryonic muscle relies on a receptor complementation mechanism, prompted by the merging of myoblasts with myofibres, each carrying one component of the heterodimer receptor complex. The competence of myofibres to fuse is likely restored through endocytic degradation of activated receptors. Altogether, this study shows that muscle fusion relies on TGFβ signalling to regulate its pace.


2000 ◽  
Vol 182 (4) ◽  
pp. 1118-1126 ◽  
Author(s):  
Niilo Kaldalu ◽  
Urve Toots ◽  
Victor de Lorenzo ◽  
Mart Ustav

ABSTRACT The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions.


2014 ◽  
Author(s):  
◽  
Danny A. Stark

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Skeletal muscle can be isolated into 642 individual muscles and makes up to one third to one half of the mass of the human body. Each of these muscles is specified and patterned prenatally and after birth they will increase in size and take on characteristics suited to each muscle's unique function. To make the muscles functional, each muscle cell must be innervated by a motor neuron, which will also affect the characteristics of the mature muscle. In a healthy adult, muscles will maintain their specialized pattern and function during physiological homeostasis, and will also recapitulate them if the integrity or health of the muscle is disrupted. This repair and regeneration is dependent satellite cells, the skeletal muscle stem cells. In this dissertation, we study a family of receptor tyrosine kinases, Ephs, and their juxtacrine ephrin ligands in the context of skeletal muscle specification and regeneration. First, using a classical ephrin 'stripe' assay to test for contact-mediated repulsion, we found that satellite cells respond to a subset of ephrins with repulsive motility in vitro and that these forward signals through Ephs also promote patterning of differentiating myotubes parallel to ephrin stripes. This pattering can be replicated in a heterologous in vivo system (the hindbrain of the developing quail, where neural crest cells migrate in streams to the branchial arches, and in the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite). Second, we present evidence that specific pairwise interactions between Eph receptor tyrosine kinases and ephrin ligands are required to ensure appropriate muscle innervation when it is originally set during postnatal development and when it is recapitulated after muscle or nerve trauma during adulthood. We show expression of a single ephrin, ephrin-A3, exclusively on type I (slow) myofibers shortly after birth, while its receptor EphA8 is only localized to fast motor endplates, suggesting a functional repulsive interaction for motor axon guidance and/or synaptogenesis. Adult EFNA3-/- mutant mice show a significant loss of slow myofibers, while misexpression of ephrin-A3 on fast myofibers results in a switch from a fast fiber type to slow in the context of sciatic nerve injury and regrowth. Third, we show that EphA7 is expressed on satellite cell derived myocytes in vitro, and marks both myocytes and regenerating myofibers in vivo. In the EPHA7 knockout mouse, we find a regeneration defect in a barium chloride injury model starting 3 days post injection in vivo, and that cultured mutant satellite cells are slow to differentiate and divide. Finally, we present other potential Ephs and ephrins that may affect skeletal muscle, such as EphB1 that is expressed on all MyHC-IIb fibers and a subset of MyHC-IIx fibers, and we show a multitude of Ephs and ephrins at the neuromuscular junction that appear to localize on specific myofibers and at different areas of the synapse. We propose that Eph/ephrin signaling, though well studied in development, continues to be important in regulating post natal development, regeneration, and homeostasis of skeletal muscle.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shiue-Wei Lai ◽  
Ming-Yao Chen ◽  
Oluwaseun Adebayo Bamodu ◽  
Ming-Shou Hsieh ◽  
Ting-Yi Huang ◽  
...  

Background. Treating advanced colon cancer remains challenging in clinical settings because of the development of drug resistance and distant metastasis. Mechanisms underlying the metastasis of colon cancer are complex and unclear. Methods. Computational analysis was performed to determine genes associated with the exosomal long noncoding (lncRNA) plasmacytoma variant translocation 1 (PVT1)/vascular endothelial growth factor A (VEGFA) axis in patients with colon cancer. The biological importance of the exosomal lncRNA PVT1/VEGFA axis was examined in vitro by using HCT116 and LoVo cell lines and in vivo by using a patient-derived xenograft (PDX) mouse model through knockdown (by silencing of PVT1) and overexpression (by adding serum exosomes isolated from patients with distant metastasis (M-exo)). Results. The in silico analysis demonstrated that PVT1 overexpression was associated with poor prognosis and increased expression of metastatic markers such as VEGFA and epidermal growth factor receptor (EGFR). This finding was further validated in a small cohort of patients with colon cancer in whom increased PVT1 expression was correlated with colon cancer incidence, disease recurrence, and distant metastasis. M-exo were enriched with PVT1 and VEGFA, and both migratory and invasive abilities of colon cancer cell lines increased when they were cocultured with M-exo. The metastasis-promoting effect was accompanied by increased expression of Twist1, vimentin, and MMP2. M-exo promoted metastasis in PDX mice. In vitro silencing of PVT1 reduced colon tumorigenic properties including migratory, invasive, colony forming, and tumorsphere generation abilities. Further analysis revealed that PVT1, VEGFA, and EGFR interact with and are regulated by miR-152-3p. Increased miR-152-3p expression reduced tumorigenesis, where increased tumorigenesis was observed when miR-152-3p expression was downregulated. Conclusion. Exosomal PVT1 promotes colon cancer metastasis through its association with EGFR and VEGFA expression. miR-152-3p targets both PVT1 and VEGFA, and this regulatory pathway can be explored for drug development and as a prognostic biomarker.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 311 ◽  
Author(s):  
Weiyi Zhang ◽  
Jie Gao ◽  
Chuanjing Cheng ◽  
Man Zhang ◽  
Wenjuan Liu ◽  
...  

At present, melanoma is a common malignant tumor with the highest mortality rate of all types of skin cancer. Although the first option for treating melanoma is with chemicals, the effects are unsatisfactory and include poor medication response and high resistance. Therefore, developing new medicines or a novel combination approach would be a significant breakthrough. Here, we present cinnamaldehyde (CA) as a potential candidate, which exerted an antitumor effect in melanoma cell lines. Chemical biology methods of target fishing, molecular imaging, and live cell tracing by an alkynyl–CA probe revealed that the α-enolase (ENO1) protein was the target of CA. The covalent binding of CA with ENO1 changed the stability of the ENO1 protein and affected the glycolytic activity. Furthermore, our results demonstrated that dacarbazine (DTIC) showed a high promoting effect with CA for antimelanoma both in vivo and in vitro. The combination improved the DTIC cell cycle arrest in the S phase and markedly impacted melanoma growth. As a covalent inhibitor of ENO1, CA combined with DTIC may be beneficial in patients with drug resistance in antimelanoma therapy.


Author(s):  
Yiwei Wang ◽  
Minghui Zhao ◽  
Sijia He ◽  
Yuntao Luo ◽  
Yucui Zhao ◽  
...  

Abstract Background Tumor cell repopulation after radiotherapy is a major cause for the tumor radioresistance and recurrence. This study aims to investigate the underlying mechanism of tumor repopulation after radiotherapy, with focus on whether and how necroptosis takes part in this process. Methods Necroptosis after irradiation were examined in vitro and in vivo. And the growth-promoting effect of necroptotic cells was investigated by chemical inhibitors or shRNA against necroptosis associated proteins and genes in in vitro and in vivo tumor repopulation models. Downstream relevance factors of necroptosis were identified by western blot and chemiluminescent immunoassays. Finally, the immunohistochemistry staining of identified necroptosis association growth stimulation factor was conducted in human colorectal tumor specimens to verify the relationship with clinical outcome. Results Radiation-induced necroptosis depended on activation of RIP1/RIP3/MLKL pathway, and the evidence in vitro and in vivo demonstrated that the inhibition of necroptosis attenuated growth-stimulating effects of irradiated tumor cells on living tumor reporter cells. The JNK/IL-8 were identified as downstream molecules of pMLKL during necroptosis, and inhibition of JNK, IL-8 or IL-8 receptor significantly reduced tumor repopulation after radiotherapy. Moreover, the high expression of IL-8 was associated with poor clinical prognosis in colorectal cancer patients. Conclusions Necroptosis associated tumor repopulation after radiotherapy depended on activation of RIP1/RIP3/MLKL/JNK/IL-8 pathway. This novel pathway provided new insight into understanding the mechanism of tumor radioresistance and repopulation, and MLKL/JNK/IL-8 could be developed as promising targets for blocking tumor repopulation to enhance the efficacy of colorectal cancer radiotherapy.


2019 ◽  
Vol 317 (1) ◽  
pp. C48-C57 ◽  
Author(s):  
Shama R. Iyer ◽  
Sameer B. Shah ◽  
Christopher W. Ward ◽  
Joseph P. Stains ◽  
Espen E. Spangenburg ◽  
...  

Mechanical forces regulate muscle development, hypertrophy, and homeostasis. Force-transmitting structures allow mechanotransduction at the sarcolemma, cytoskeleton, and nuclear envelope. There is growing evidence that Yes-associated protein (YAP) serves as a nuclear relay of mechanical signals and can induce a range of downstream signaling cascades. Dystrophin is a sarcolemma-associated protein, and its absence underlies the pathology in Duchenne muscular dystrophy. We tested the hypothesis that the absence of dystrophin in muscle would result in reduced YAP signaling in response to loading. Following in vivo contractile loading in muscles of healthy (wild-type; WT) mice and mice lacking dystrophin ( mdx), we performed Western blots of whole and fractionated muscle homogenates to examine the ratio of phospho (cytoplasmic) YAP to total YAP and nuclear YAP, respectively. We show that in vivo contractile loading induced a robust increase in YAP expression and its nuclear localization in WT muscles. Surprisingly, in mdx muscles, active YAP expression was constitutively elevated and unresponsive to load. Results from qRT-PCR analysis support the hyperactivation of YAP in vivo in mdx muscles, as evidenced by increased gene expression of YAP downstream targets. In vitro assays of isolated myofibers plated on substrates with high stiffness showed YAP nuclear labeling for both genotypes, indicating functional YAP signaling in mdx muscles. We conclude that while YAP signaling can occur in the absence of dystrophin, dystrophic muscles have altered mechanotransduction, whereby constitutively active YAP results in a failure to respond to load, which could be attributed to the increased state of “pre-stress” with increased cytoskeletal and extracellular matrix stiffness.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2859-2870 ◽  
Author(s):  
OJ Borge ◽  
V Ramsfjell ◽  
OP Veiby ◽  
MJ Jr Murphy ◽  
S Lok ◽  
...  

The recently cloned c-mpl ligand, thrombopoietin (Tpo), has been extensively characterized with regard to its ability to stimulate the growth, development, and ploidy of megakaryocyte progenitor cells and platelet production in vitro and in vivo. Primitive hematopoietic progenitors have been shown to express c-mpl, the receptor for Tpo. In the present study, we show that Tpo efficiently promotes the viability of a subpopulation of Lin-Sca-1+ bone marrow progenitor cells. The ability of Tpo to maintain viable Lin-Sca-1+ progenitors was comparable to that of granulocyte colony-stimulating factor and interleukin-1, whereas stem cell factor (SCF) promoted the viability of a higher number of Lin-Sca-1+ progenitor cells when incubated for 40 hours. However, after prolonged (> 40 hours) preincubation, the viability-promoting effect of Tpo was similar to that of SCF. An increased number of progenitors surviving in response to Tpo had megakaryocyte potential (37%), although almost all of the progenitors produced other myeloid cell lineages as well, suggesting that Tpo acts to promote the viability of multipotent progenitors. The ability of Tpo to promote viability of Lin-Sca-1+ progenitor cells was observed when cells were plated at a concentration of 1 cell per well in fetal calf serum-supplemented and serum-depleted medium. Finally, the DNA strand breakage elongation assay showed that Tpo inhibits apoptosis of Lin-Sca-1+ bone marrow cells. Thus, Tpo has a potent ability to promote the viability and suppress apoptosis of primitive multipotent progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document