scholarly journals Metabolic flexibility allows generalist bacteria to become dominant in a frequently disturbed ecosystem

Author(s):  
Ya-Jou Chen ◽  
Pok Man Leung ◽  
Sean K. Bay ◽  
Philip Hugenholtz ◽  
Adam J. Kessler ◽  
...  

AbstractEcological theory suggests that habitat disturbance differentially influences distributions of generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resource availability and other conditions. Microbial community composition and function was profiled in intertidal and subtidal sediments using 16S amplicon sequencing and metagenomics, yielding 135 metagenome-assembled genomes. Microbial abundance and composition significantly differed with sediment depth and, to a lesser extent, sampling date. Several generalist taxa were highly abundant and prevalent in all samples, including within orders Woeseiales and Flavobacteriales; genome reconstructions indicate these facultatively anaerobic taxa are highly metabolically flexible and adapt to fluctuations in resource availability by using different electron donors and acceptors. In contrast, obligately anaerobic taxa such as sulfate reducers (Desulfobacterales, Desulfobulbales) and proposed candidate phylum MBNT15 were less abundant overall and only thrived in more stable deeper sediments. We substantiated these findings by measuring three metabolic processes in these sediments; whereas the generalist-associated processes of sulfide oxidation and hydrogenogenic fermentation occurred rapidly at all depths, the specialist-associated process of sulfate reduction was restricted to deeper sediments. In addition, a manipulative experiment confirmed generalists outcompete specialist taxa during simulated habitat disturbance. Altogether, these findings suggest that metabolically flexible taxa become dominant in these highly dynamic environments, whereas metabolic specialism restricts bacteria to narrower niches. Thus, an ecological theory describing distribution patterns for macroorganisms likely extends to microorganisms. Such findings have broad ecological and biogeochemical ramifications.

2021 ◽  
Author(s):  
Ya-Jou Chen ◽  
Pok Man Leung ◽  
Jennifer L. Wood ◽  
Sean K. Bay ◽  
Philip Hugenholtz ◽  
...  

AbstractEcological theory suggests that habitat disturbance differentially influences distributions of habitat generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resource availability and physicochemical conditions. Microbial community composition and function were profiled in intertidal and subtidal sediments using 16S rRNA gene amplicon sequencing and metagenomics, yielding 135 metagenome-assembled genomes. Community composition and metabolic traits modestly varied with sediment depth and sampling date. Several taxa were highly abundant and prevalent in all samples, including within the orders Woeseiales and Flavobacteriales, and classified as habitat generalists; genome reconstructions indicate these taxa are highly metabolically flexible facultative anaerobes and adapt to resource variability by using different electron donors and acceptors. In contrast, obligately anaerobic taxa such as sulfate reducers and candidate lineage MBNT15 were less abundant overall and only thrived in more stable deeper sediments. We substantiated these findings by measuring three metabolic processes in these sediments; whereas the habitat generalist-associated processes of sulfide oxidation and fermentation occurred rapidly at all depths, the specialist-associated process of sulfate reduction was restricted to deeper sediments. A manipulative experiment also confirmed habitat generalists outcompete specialist taxa during simulated habitat disturbance. Together, these findings show metabolically flexible habitat generalists become dominant in highly dynamic environments, whereas metabolically constrained specialists are restricted to narrower niches. Thus, an ecological theory describing distribution patterns for macroorganisms likely extends to microorganisms. Such findings have broad ecological and biogeochemical ramifications.


2006 ◽  
Vol 361 (1475) ◽  
pp. 1997-2008 ◽  
Author(s):  
David M Ward ◽  
Mary M Bateson ◽  
Michael J Ferris ◽  
Michael Kühl ◽  
Andrea Wieland ◽  
...  

We have investigated microbial mats of alkaline siliceous hot springs in Yellowstone National Park as natural model communities to learn how microbial populations group into species-like fundamental units. Here, we bring together empirical patterns of the distribution of molecular variation in predominant mat cyanobacterial populations, theory-based modelling of how to demarcate phylogenetic clusters that correspond to ecological species and the dynamic patterns of the physical and chemical microenvironments these populations inhabit and towards which they have evolved adaptations. We show that putative ecotypes predicted by the theory-based model correspond well with distribution patterns, suggesting populations with distinct ecologies, as expected of ecological species. Further, we show that increased molecular resolution enhances our ability to detect ecotypes in this way, though yet higher molecular resolution is probably needed to detect all ecotypes in this microbial community.


2020 ◽  
Author(s):  
Boheng Ma ◽  
Xueran Mei ◽  
Changwei Lei ◽  
Cui Li ◽  
Yufeng Gao ◽  
...  

ABSTRACTEnrofloxacin is an important antibiotic used for prevention and treatment of Salmonella infection in poultry in many countries. However, oral administration of enrofloxacin may lead to the alterations in the microbiota and metabolome in the chicks intestine, thereby reducing colonization resistance to the Salmonella infection. To study the effects of enrofloxacin on chicken cecal Salmonella, we used different concentrations of enrofloxacin to feed 1-day-old chickens, followed by oral challenge with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium). We then explored the distribution patterns of S. Typhimurium in vivo in intestinal contents using quantitative polymerase chain reaction and microbial 16S amplicon sequencing on days 7, 14, and 21. Metabolome sequencing was used to explore the gut metabolome on day 14. Faecalibacterium and Anaerostipes, which are closely related to the chicken intestinal metabolome, were screened using a multi-omics technique. The abundance of S. Typhimurium was significantly higher in the enrofloxacin-treated group than in the untreated group, and S. Typhimurium persisted longer. Moreover, the cecal colony structures of the three groups exhibited different characteristics, with Lactobacillus reaching its highest abundance on day 21. Notably, S. Typhimurium infection is known to affect the fecal metabolome of chickens differently. Thus, our results suggested that enrofloxacin and Salmonella infections completely altered the intestinal metabolism of chickens.IMPORTANCEIn this study, we examined the effects of S. Typhimurium infection and enrofloxacin treatment on the microbial flora and metabolite synthesis in chicken guts in order to identify target metabolites that may cause S. Typhimurium colonization and severe inflammation and to evaluate the important flora that may be associated with these metabolites. Our findings may facilitate the use of antibiotics to prevent S. Typhimurium infection.


2021 ◽  
Vol 8 ◽  
Author(s):  
Matthew Fuirst ◽  
Christopher S. Ward ◽  
Caroline Schwaner ◽  
Zoie Diana ◽  
Thomas F. Schultz ◽  
...  

The decorator worm Diopatra cuprea, a tube-forming marine polychaete common to intertidal and shallow subtidal waters, modifies habitats it occupies through microreef construction and algal gardening. While several studies have demonstrated that decorator worm tubes are hotspots of biogeochemical activity (i.e., nitrogen and sulfur cycling), it is still largely unclear whether the tube microbiome differs compositionally from the surrounding sediment and what distinct functional processes tube microbiomes may have. To address these unknowns, this study analyzed the bacterial communities of D. cuprea tubes and surrounding sediments using high-throughput 16S rRNA gene amplicon sequencing. Tubes and sediments were sampled at three sites along an anthropogenic stress gradient within the Newport River Estuary to also assess geographic variation of tube microbiomes and the possible influence of human disturbance. We found a clear distinction in the microbial community composition and diversity between tubes and surrounding sediment. Tube microbiomes were significantly enriched for the phyla Bacteriodetes, Actinobacteria, Verrucomicrobia, Deferribacteres, Latescibacteria, and Lentisphaerae. Chloroplast sequences of macroalgae and grass species were consistently abundant in tubes and nearly absent in surrounding sediment. Functional annotation of prokaryotic taxa (FAPROTAX)-based functional predictions suggested that tube microbiomes have higher potentials for aerobic chemoheterotrophy, sulfur compound respiration, nitrate reduction, methylotrophy, and hydrocarbon degradation than surrounding sediments. Tube microbiomes vary across sites, though dissimilarity is comparatively low compared to tube-to-sediment differences. Contrary to our hypothesis, the tubes at the most highly impacted site had the highest microbial diversity [i.e., amplicon sequence variant (ASV) richness and Shannon’s diversity], yet tubes from the medium impacted site actually had the lowest microbial diversity. Our findings show that D. cuprea tubes support a microbiome that is significantly distinct in composition and function from the surrounding sediment. Diopatra cuprea tubes appear to create unique microhabitats that facilitate numerous microbially-mediated biogeochemical processes in the marine benthic environment.


Author(s):  
A. Meziti ◽  
E. Nikouli ◽  
J.K. Hatt ◽  
K. Konstantinidis ◽  
K. Ar. Kormas

AbstractGeothermal springs are barely affected by environmental conditions aboveground as they are continuously supplied with subsurface water with little variability in chemistry. Therefore, changes in their microbial community composition and function, especially over a long period, are expected to be limited but this assumption has not yet been rigorously tested. Toward closing this knowledge gap, we applied whole metagenome sequencing to 17 water samples collected between 2010 and 2016 (two to four samples per year) from the Thermopyles sulfur geothermal springs in central Greece. As revealed by 16S rRNA gene fragments recovered in the metagenomes, Epsilonproteobacteria-related operational taxonomic units (OTUs) dominated most samples, while grouping of samples based on OTU abundances exhibited no apparent seasonal pattern. Similarities between samples regarding functional gene content were high, especially in comparison to other surface water systems in Greece, with all samples sharing >70% similarity in functional pathways. These community-wide patterns were further confirmed by analysis of metagenome-assembled genomes (MAGs), which showed - in addition- that novel species and genera of the chemoautotrophic Campylobacterales order dominated the springs. These MAGs carried different pathways for thiosulfate and/or sulfide oxidation coupled to carbon fixation pathways. Overall, our study showed that even in the long term, functions of microbial communities in a moderately hot terrestrial spring remain stable, driving presumably the corresponding stability in community structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tzipi Braun ◽  
Shiraz Halevi ◽  
Rotem Hadar ◽  
Gilate Efroni ◽  
Efrat Glick Saar ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) has rapidly spread around the world, impacting the lives of many individuals. Growing evidence suggests that the nasopharyngeal and respiratory tract microbiome are influenced by various health and disease conditions, including the presence and the severity of different viral disease. To evaluate the potential interactions between Severe Acute Respiratory Syndrome Corona 2 (SARS-CoV-2) and the nasopharyngeal microbiome. Microbial composition of nasopharyngeal swab samples submitted to the clinical microbiology lab for suspected SARS-CoV-2 infections was assessed using 16S amplicon sequencing. The study included a total of 55 nasopharyngeal samples from 33 subjects, with longitudinal sampling available for 12 out of the 33 subjects. 21 of the 33 subjects had at least one positive COVID-19 PCR results as determined by the clinical microbiology lab. Inter-personal variation was the strongest factor explaining > 75% of the microbial variation, irrespective of the SARS-CoV-2 status. No significant effect of SARS-CoV-2 on the nasopharyngeal microbial community was observed using multiple analysis methods. These results indicate that unlike some other viruses, for which an effect on the microbial composition was noted, SARS-CoV-2 does not have a strong effect on the nasopharynx microbial habitants.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lars Snipen ◽  
Inga-Leena Angell ◽  
Torbjørn Rognes ◽  
Knut Rudi

Abstract Background Studies of shifts in microbial community composition has many applications. For studies at species or subspecies levels, the 16S amplicon sequencing lacks resolution and is often replaced by full shotgun sequencing. Due to higher costs, this restricts the number of samples sequenced. As an alternative to a full shotgun sequencing we have investigated the use of Reduced Metagenome Sequencing (RMS) to estimate the composition of a microbial community. This involves the use of double-digested restriction-associated DNA sequencing, which means only a smaller fraction of the genomes are sequenced. The read sets obtained by this approach have properties different from both amplicon and shotgun data, and analysis pipelines for both can either not be used at all or not explore the full potential of RMS data. Results We suggest a procedure for analyzing such data, based on fragment clustering and the use of a constrained ordinary least square de-convolution for estimating the relative abundance of all community members. Mock community datasets show the potential to clearly separate strains even when the 16S is 100% identical, and genome-wide differences is < 0.02, indicating RMS has a very high resolution. From a simulation study, we compare RMS to shotgun sequencing and show that we get improved abundance estimates when the community has many very closely related genomes. From a real dataset of infant guts, we show that RMS is capable of detecting a strain diversity gradient for Escherichia coli across time. Conclusion We find that RMS is a good alternative to either metabarcoding or shotgun sequencing when it comes to resolving microbial communities at the strain level. Like shotgun metagenomics, it requires a good database of reference genomes and is well suited for studies of the human gut or other communities where many reference genomes exist. A data analysis pipeline is offered, as an R package at https://github.com/larssnip/microRMS.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gongchao Jing ◽  
Yufeng Zhang ◽  
Wenzhi Cui ◽  
Lu Liu ◽  
Jian Xu ◽  
...  

Abstract Background Due to their much lower costs in experiment and computation than metagenomic whole-genome sequencing (WGS), 16S rRNA gene amplicons have been widely used for predicting the functional profiles of microbiome, via software tools such as PICRUSt 2. However, due to the potential PCR bias and gene profile variation among phylogenetically related genomes, functional profiles predicted from 16S amplicons may deviate from WGS-derived ones, resulting in misleading results. Results Here we present Meta-Apo, which greatly reduces or even eliminates such deviation, thus deduces much more consistent diversity patterns between the two approaches. Tests of Meta-Apo on > 5000 16S-rRNA amplicon human microbiome samples from 4 body sites showed the deviation between the two strategies is significantly reduced by using only 15 WGS-amplicon training sample pairs. Moreover, Meta-Apo enables cross-platform functional comparison between WGS and amplicon samples, thus greatly improve 16S-based microbiome diagnosis, e.g. accuracy of gingivitis diagnosis via 16S-derived functional profiles was elevated from 65 to 95% by WGS-based classification. Therefore, with the low cost of 16S-amplicon sequencing, Meta-Apo can produce a reliable, high-resolution view of microbiome function equivalent to that offered by shotgun WGS. Conclusions This suggests that large-scale, function-oriented microbiome sequencing projects can probably benefit from the lower cost of 16S-amplicon strategy, without sacrificing the precision in functional reconstruction that otherwise requires WGS. An optimized C++ implementation of Meta-Apo is available on GitHub (https://github.com/qibebt-bioinfo/meta-apo) under a GNU GPL license. It takes the functional profiles of a few paired WGS:16S-amplicon samples as training, and outputs the calibrated functional profiles for the much larger number of 16S-amplicon samples.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
J. Santiago Mejia ◽  
Erik N. Arthun ◽  
Richard G. Titus

One approach to identify epitopes that could be used in the design of vaccines to control several arthropod-borne diseases simultaneously is to look for common structural features in the secretome of the pathogens that cause them. Using a novel bioinformatics technique, cysteine-abundance and distribution analysis, we found that many different proteins secreted by several arthropod-borne pathogens, includingPlasmodium falciparum, Borrelia burgdorferi, and eight species of Proteobacteria, are devoid of cysteine residues. The identification of three cysteine-abundance and distribution patterns in several families of proteins secreted by pathogenic and nonpathogenic Proteobacteria, and not found when the amino acid analyzed was tryptophan, provides evidence of forces restricting the content of cysteine residues in microbial proteins during evolution. We discuss these findings in the context of protein structure and function, antigenicity and immunogenicity, and host-parasite relationships.


Sign in / Sign up

Export Citation Format

Share Document