scholarly journals A Novel Small Animal Model of Norovirus Diarrhea

2020 ◽  
Author(s):  
Alexa N. Roth ◽  
Emily W. Helm ◽  
Carmen Mirabelli ◽  
Erin Kirsche ◽  
Jonathan C. Smith ◽  
...  

ABSTRACTHuman noroviruses are the leading cause of severe childhood diarrhea worldwide yet we know very little about their pathogenic mechanisms. Murine noroviruses cause diarrhea in interferon-deficient adult mice but these hosts also develop systemic pathology and lethality, reducing confidence in the translatability of findings to human norovirus disease. Herein we report that a murine norovirus causes self-resolving diarrhea in the absence of systemic disease in wild-type neonatal mice, thus mirroring the key features of human norovirus disease and representing a robust norovirus small animal disease model. Intriguingly, lymphocytes are critical for controlling acute norovirus replication while simultaneously contributing to disease severity, likely reflecting their dual role as targets of viral infection and key components of the host response.

Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 759 ◽  
Author(s):  
Jasmine L. Madrigal ◽  
Sutonuka Bhar ◽  
Samantha Hackett ◽  
Haley Engelken ◽  
Ross Joseph ◽  
...  

The presence of commensal bacteria enhances both acute and persistent infection of murine noroviruses. For several enteric viral pathogens, mechanisms by which these bacteria enhance infection involve direct interactions between the virus and bacteria. While it has been demonstrated that human noroviruses bind to a variety of commensal bacteria, it is not known if this is also true for murine noroviruses. The goal of this study was to characterize interactions between murine noroviruses and commensal bacteria and determine the impact of bacterial growth conditions, incubation temperature and time, on murine norovirus attachment to microbes that comprise the mammalian microbiome. We show that murine noroviruses bind directly to commensal bacteria and show similar patterns of attachment as human norovirus VLPs examined under the same conditions. Furthermore, while binding levels are not impacted by the growth phase of the bacteria, they do change with time and incubation temperature. We also found that murine norovirus can bind to a commensal fungal species, Candida albicans.


2008 ◽  
Vol 82 (13) ◽  
pp. 6610-6617 ◽  
Author(s):  
Karen A. Chachu ◽  
David W. Strong ◽  
Anna D. LoBue ◽  
Christiane E. Wobus ◽  
Ralph S. Baric ◽  
...  

ABSTRACT Human noroviruses cause more than 90% of epidemic nonbacterial gastroenteritis. However, the role of B cells and antibody in the immune response to noroviruses is unclear. Previous studies have demonstrated that human norovirus specific antibody levels increase upon infection, but they may not be protective against infection. In this report, we used murine norovirus (MNV), an enteric norovirus, as a model to determine the importance of norovirus specific B cells and immune antibody in clearance of norovirus infection. We show here that mice genetically deficient in B cells failed to clear primary MNV infection as effectively as wild-type mice. In addition, adoptively transferred immune splenocytes derived from B-cell-deficient mice or antibody production-deficient mice were unable to efficiently clear persistent MNV infection in RAG1−/− mice. Further, adoptive transfer of either polyclonal anti-MNV serum or neutralizing anti-MNV monoclonal antibodies was sufficient to reduce the level of MNV infection both systemically and in the intestine. Together, these data demonstrate that antibody plays an important role in the clearance of MNV and that immunoglobulin G anti-norovirus antibody can play an important role in clearing mucosal infection.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Stefan Taube ◽  
Abimbola O. Kolawole ◽  
Marina Höhne ◽  
John E. Wilkinson ◽  
Scott A. Handley ◽  
...  

ABSTRACT Human noroviruses (HuNoVs) cause significant morbidity and mortality worldwide. However, despite substantial efforts, a small-animal model for HuNoV has not been described to date. Since “humanized” mice have been successfully used to study human-tropic pathogens in the past, we challenged BALB/c mice deficient in recombination activation gene (Rag) 1 or 2 and common gamma chain (γc) (Rag-γc) engrafted with human CD34+ hematopoietic stem cells, nonengrafted siblings, and immunocompetent wild-type controls with pooled stool isolates from patients positive for HuNoV. Surprisingly, both humanized and nonhumanized BALB/c Rag-γc-deficient mice supported replication of a GII.4 strain of HuNoV, as indicated by increased viral loads over input. In contrast, immunocompetent wild-type BALB/c mice were not infected. An intraperitoneal route of infection and the BALB/c genetic background were important for facilitating a subclinical HuNoV infection of Rag-γc-deficient mice. Expression of structural and nonstructural proteins was detected in cells with macrophage-like morphology in the spleens and livers of BALB/c Rag-γc-deficient mice, confirming the ability of HuNoV to replicate in a mouse model. In summary, HuNoV replication in BALB/c Rag-γc-deficient mice is dependent on the immune-deficient status of the host but not on the presence of human immune cells and provides the first genetically manipulable small-animal model for studying HuNoV infection. IMPORTANCE Human noroviruses are a significant cause of viral gastroenteritis worldwide, resulting in significant morbidity and mortality. Antivirals and vaccines are currently not available, in part due to the inability to study these viruses in a genetically manipulable, small-animal model. Herein, we report the first mouse model for human noroviruses. This model will accelerate our understanding of human norovirus biology and provide a useful resource for evaluating antiviral therapies.


2014 ◽  
Vol 58 (8) ◽  
pp. 4675-4681 ◽  
Author(s):  
J. Rocha-Pereira ◽  
M. S. J. Nascimento ◽  
Q. Ma ◽  
R. Hilgenfeld ◽  
J. Neyts ◽  
...  

ABSTRACTPotent and safe inhibitors of norovirus replication are needed for the treatment and prophylaxis of norovirus infections. We here report that thein vitroanti-norovirus activity of the protease inhibitor rupintrivir is extended to murine noroviruses and that rupintrivir clears human cells from their Norwalk replicon after only two passages of antiviral pressure. In addition, we demonstrate that rupintrivir inhibits the human norovirus (genogroup II [GII]) protease and further explain the inhibitory effect of the molecule by means of molecular modeling on the basis of the crystal structure of the Norwalk virus protease. The combination of rupintrivir with the RNA-dependent RNA polymerase inhibitors 2′-C-methylcytidine and favipiravir (T-705) resulted in a merely additive antiviral effect. The fact that rupintrivir is active against noroviruses belonging to genogroup I (Norwalk virus), genogroup V (murine norovirus), and the recombinant 3C-like protease of a GII norovirus suggests that the drug exerts cross-genotypic anti-norovirus activity and will thus most likely be effective against the clinically relevant human norovirus strains. The design of antiviral molecules targeting the norovirus protease could be a valuable approach for the treatment and/or prophylaxis of norovirus infections.


2009 ◽  
Vol 83 (13) ◽  
pp. 6963-6968 ◽  
Author(s):  
Guangliang Liu ◽  
Shannon M. Kahan ◽  
Yali Jia ◽  
Stephanie M. Karst

ABSTRACT Human noroviruses in the Caliciviridae family are the major cause of nonbacterial epidemic gastroenteritis worldwide. Primary human norovirus infection does not elicit lasting protective immunity, a fact that could greatly affect the efficacy of vaccination strategies. Little is known regarding the pathogenesis of human noroviruses or the immune responses that control them because there has previously been no small-animal model or cell culture system of infection. Using the only available small-animal model of norovirus infection, we found that primary high-dose murine norovirus 1 (MNV-1) infection fails to afford protection against a rechallenge with a homologous virus. Thus, MNV-1 represents a valuable model with which to dissect the pathophysiological basis for the lack of lasting protection against human norovirus infection. Interestingly, the magnitude of protection afforded by a primary MNV-1 infection inversely correlates with the inoculum dose. Future studies will elucidate the mechanisms by which noroviruses avoid the induction of protective immunity and the role played by the inoculum dose in this process, ultimately translating this knowledge into successful vaccination approaches.


Pathogens ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 13 ◽  
Author(s):  
◽  

Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well as the development of a foodborne route of transmission has reignited interest in studying oral models of listeriosis. In this review, we analyze previously published reports to highlight both the similarities and differences in tissue colonization and host response to infection using either oral or i.v. inoculation.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rebecca L. Brocato ◽  
Steven A. Kwilas ◽  
Robert K. Kim ◽  
Xiankun Zeng ◽  
Lucia M. Principe ◽  
...  

AbstractA worldwide effort to counter the COVID-19 pandemic has resulted in hundreds of candidate vaccines moving through various stages of research and development, including several vaccines in phase 1, 2 and 3 clinical trials. A relatively small number of these vaccines have been evaluated in SARS-CoV-2 disease models, and fewer in a severe disease model. Here, a SARS-CoV-2 DNA targeting the spike protein and delivered by jet injection, nCoV-S(JET), elicited neutralizing antibodies in hamsters and was protective in both wild-type and transiently immunosuppressed hamster models. This study highlights the DNA vaccine, nCoV-S(JET), we developed has a great potential to move to next stage of preclinical studies, and it also demonstrates that the transiently-immunosuppressed Syrian hamsters, which recapitulate severe and prolonged COVID-19 disease, can be used for preclinical evaluation of the protective efficacy of spike-based COVID-19 vaccines.


2006 ◽  
Vol 80 (1) ◽  
pp. 360-371 ◽  
Author(s):  
Dorothea L. Sawicki ◽  
Silvia Perri ◽  
John M. Polo ◽  
Stanley G. Sawicki

ABSTRACT In order to establish nonlytic persistent infections (PI) of BHK cells, replicons derived from Sindbis (SIN) and Semliki Forest (SFV) viruses have mutations in nsP2. Five different nsP2 PI replicons were compared to wild-type (wt) SIN, SFV, and wt nsPs SIN replicons. Replicon PI BHK21 cells had viral RNA synthesis rates that were less than 5% of those of the wt virus and ∼10% or less of those of SIN wt replicon-infected cells, and, in contrast to wt virus and replicons containing wt nsP2, all showed a phenotype of continuous minus-strand synthesis and of unstable, mature replication/transcription complexes (RC+) that are active in plus-strand synthesis. Minus-strand synthesis and incorporation of [3H]uridine into replicative intermediates differed among PI replicons, depending on the location of the mutation in nsP2. Minus-strand synthesis by PI cells appeared normal; it was dependent on continuous P123 and P1234 polyprotein synthesis and ceased when protein synthesis was inhibited. The failure by the PI replicons to shut off minus-strand synthesis was not due to some defect in the PI cells but rather was due to the loss of some function in the mutated nsP2. This was demonstrated by showing that superinfection of PI cells with wt SFV triggered the shutdown of minus-strand synthesis, which we believe is a host response to infection with alphaviruses. Together, the results indicate alphavirus nsP2 functions to engage the host response to infection and activate a switch from the early-to-late phase. The loss of this function leads to continuous viral minus-strand synthesis and the production of unstable RC+.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 416
Author(s):  
Robert Creutznacher ◽  
Thorben Maass ◽  
Patrick Ogrissek ◽  
Georg Wallmann ◽  
Clara Feldmann ◽  
...  

Glycan–protein interactions are highly specific yet transient, rendering glycans ideal recognition signals in a variety of biological processes. In human norovirus (HuNoV) infection, histo-blood group antigens (HBGAs) play an essential but poorly understood role. For murine norovirus infection (MNV), sialylated glycolipids or glycoproteins appear to be important. It has also been suggested that HuNoV capsid proteins bind to sialylated ganglioside head groups. Here, we study the binding of HBGAs and sialoglycans to HuNoV and MNV capsid proteins using NMR experiments. Surprisingly, the experiments show that none of the norovirus P-domains bind to sialoglycans. Notably, MNV P-domains do not bind to any of the glycans studied, and MNV-1 infection of cells deficient in surface sialoglycans shows no significant difference compared to cells expressing respective glycans. These findings redefine glycan recognition by noroviruses, challenging present models of infection.


2004 ◽  
Vol 72 (3) ◽  
pp. 1479-1486 ◽  
Author(s):  
Anna M. van Heeckeren ◽  
Mark Schluchter ◽  
Lintong Xue ◽  
Juan Alvarez ◽  
Steven Freedman ◽  
...  

ABSTRACT In cystic fibrosis, a recessive genetic disease caused by defects in the cystic fibrosis conductance regulator (CFTR), the main cause of death is lung infection and inflammation. Nutritional deficits have been proposed to contribute to the excessive host inflammatory response in both humans and Cftr-knockout mice. Cftr-knockout mice and gut-corrected Cftr-knockout mice expressing human CFTR primarily in the gut were challenged with Pseudomonas aeruginosa-laden agarose beads; they responded similarly with respect to bronchoalveolar lavage cell counts and levels of the acute-phase cytokines tumor necrosis factor alpha, interleukin-1β (IL-1β), and IL-6. Wild-type mice fed the liquid diet used to prevent intestinal obstruction in Cftr-knockout mice had inflammatory responses to P. aeruginosa-laden agarose beads similar to those of wild-type mice fed an enriched solid diet, so dietary effects are unlikely to account for differences between wild-type mice and mice with cystic fibrosis. Finally, since cystic fibrosis patients and Cftr-knockout mice have an imbalance in fatty acids (significantly lower-than-normal levels of docosahexaenoic acid), the effects of specific supplementation with docosahexaenoic acid of wild-type and Cftr-knockout mice on their inflammatory responses to P. aeruginosa-laden agarose beads were tested. There were no significant differences (P = 0.35) in cumulative survival rates between Cftr-knockout mice and wild-type mice provided with either the liquid diet Peptamen or Peptamen containing docosahexaenoic acid. In conclusion, diet and docosahexaenoic acid imbalances alone are unlikely to explain the differences in the host response to lung infections with mucoid P. aeruginosa between mice with cystic fibrosis and their wild-type counterparts.


Sign in / Sign up

Export Citation Format

Share Document