scholarly journals Expression and T cell Regulatory Action of the PD-1 Immune Checkpoint in the Ovary and Fallopian Tube

2020 ◽  
Author(s):  
Joshua Johnson ◽  
Peter Ka Sam ◽  
Rengasamy Asokan ◽  
Evelyn Llerena Cari ◽  
Elise S. Bales ◽  
...  

The Programmed Cell Death Protein-1 (PD-1/PDCD-1/CD279) checkpoint has powerful immunomodulatory action, including in the context of cancer. PD-1 receptor activation by its ligands (PD-L1/2) is associated with downregulated immune response, and tumor cells can avoid surveillance via PD-1 and/or ligand expression. While receptor expression is largely limited to lymphoid, myeloid, and tumor cells, we show that membrane bound and soluble variants of PD-1 and ligands are also expressed by permanent constituent cell types of the human ovary and fallopian tube, including granulosa cells and oocytes. PD-1 and soluble ligands were highly enriched in exosome fractions in human follicular fluid at bioactive levels that can control T cell PD-1 activation. PD-1 checkpoint signaling may be involved in physiological ovarian functions including follicle, and ultimately, germline and embryo immune-privilege.

1987 ◽  
Vol 105 (1) ◽  
pp. 553-559 ◽  
Author(s):  
E Roos ◽  
F F Roossien

We studied the interaction of MB6A lymphoma and TAM2D2 T cell hybridoma cells with hepatocyte cultures as an in vitro model for in vivo liver invasion by these tumor cells. A monoclonal antibody against leukocyte function-associated antigen-1 (LFA-1) inhibited adhesion of the tumor cells to the surface of hepatocytes and consequently strongly reduced invasion. This effect was specific since control antibodies, directed against Thy.1 and against T200, of the same isotype, similar affinity, and comparable binding to these cells, did not inhibit adhesion. This suggests that LFA-1 is involved in the formation of liver metastases by lymphoma cells. TAM2D2 T cell hybridoma cells were agglutinated by anti-LFA-1, but not by control antibodies. Reduction of adhesion was not due to this agglutination since monovalent Fab fragments inhibited adhesion as well, inhibition was also seen under conditions where agglutination was minimal, and anti-LFA-1 similarly affected adhesion of MB6A lymphoma cells that were not agglutinated. The two cell types differed in LFA-1 surface density. TAM2D2 cells exhibited 400,000 surface LFA-1 molecules, 10 times more than MB6A cells. Nevertheless, the level of adhesion and the extent of inhibition by the anti-LFA-1 antibody were only slightly larger for the TAM2D2 cells.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Tobias X Dong ◽  
Shivashankar Othy ◽  
Amit Jairaman ◽  
Jonathan Skupsky ◽  
Angel Zavala ◽  
...  

Calcium is an essential cellular messenger that regulates numerous functions in living organisms. Here, we describe development and characterization of ‘Salsa6f’, a fusion of GCaMP6f and tdTomato optimized for cell tracking while monitoring cytosolic Ca2+, and a transgenic Ca2+ reporter mouse with Salsa6f targeted to the Rosa26 locus for Cre-dependent expression in specific cell types. The development and function of T cells was unaffected in Cd4-Salsa6f mice. We describe Ca2+ signals reported by Salsa6f during T cell receptor activation in naive T cells, helper Th17 T cells and regulatory T cells, and Ca2+ signals mediated in T cells by an activator of mechanosensitive Piezo1 channels. Transgenic expression of Salsa6f enables ratiometric imaging of Ca2+ signals in complex tissue environments found in vivo. Two-photon imaging of migrating T cells in the steady-state lymph node revealed both cell-wide and localized sub-cellular Ca2+ transients (‘sparkles’) as cells migrate.


2021 ◽  
Vol 11 ◽  
Author(s):  
Johanna Bödder ◽  
Tasmin Zahan ◽  
Rianne van Slooten ◽  
Gerty Schreibelt ◽  
I. Jolanda M. de Vries ◽  
...  

Immunotherapeutic approaches have revolutionized the treatment of several diseases such as cancer. The main goal of immunotherapy for cancer is to modulate the anti-tumor immune responses by favoring the recognition and destruction of tumor cells. Recently, a better understanding of the suppressive effect of the tumor microenvironment (TME) on immune cells, indicates that restoring the suppressive effect of the TME is crucial for an efficient immunotherapy. Natural killer (NK) cells and dendritic cells (DCs) are cell types that are currently administered to cancer patients. NK cells are used because of their ability to kill tumor cells directly via cytotoxic granzymes. DCs are employed to enhance anti-tumor T cell responses based on their ability to present antigens and induce tumor-antigen specific CD8+ T cell responses. In preclinical models, a particular DC subset, conventional type 1 DCs (cDC1s) is shown to be specialized in cross-presenting extracellular antigens to CD8+ T cells. This feature makes them a promising DC subset for cancer treatment. Within the TME, cDC1s show a bidirectional cross-talk with NK cells, resulting in a higher cDC1 recruitment, differentiation, and maturation as well as activation and stimulation of NK cells. Consequently, the presence of cDC1s and NK cells within the TME might be of utmost importance for the success of immunotherapy. In this review, we discuss the function of cDC1s and NK cells, their bidirectional cross-talk and potential strategies that could improve cancer immunotherapy.


2002 ◽  
Vol 13 (12) ◽  
pp. 4497-4507 ◽  
Author(s):  
Hebin Liu ◽  
Thomas Grundström

The multipotent cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) is involved in particular in the physiological response to infection and in inflammatory responses. GM-CSF is produced by many cell types, including T lymphocytes responding to T-cell receptor activation and mantle zone B lymphocytes. B-cell receptor and T-cell receptor activation generates two major signals: an increase in intracellular Ca2+concentration and a protein kinase cascade. Previous studies have shown that the Ca2+/calmodulin-dependent phosphatase calcineurin mediates stimulation of GM-CSF transcription in response to Ca2+. In this study, we show that Ca2+signaling also regulates GM-CSF transcription negatively through Ca2+/calmodulin-dependent kinase II (CaMK II) phosphorylation of serines in the autoinhibitory domain for DNA binding of the transcription factor Ets1. Wild-type Ets1 negatively affects GM-CSF transcription on Ca2+stimulation in the presence of cyclosporin A, which inhibits calcineurin. Conversely, Ets1 with mutated CaMK II target serines showed an increase in transactivation of the GM-CSF promoter/enhancer. Moreover, constitutively active CaMK II inhibited transactivation of GM-CSF by wild-type Ets1 but not by Ets1 with mutated CaMK II sites. Mutation of CaMK II target serines in Ets1 also relieves inhibition of cooperative transactivation of GM-CSF with the Runx1/AML1 transcription factor. In addition, the Ca2+-dependent phosphorylation of Ets1 reduces the binding of Ets1 to the GM-CSF promoter in vivo.


1995 ◽  
Vol 147 (2) ◽  
pp. 367-375 ◽  
Author(s):  
H J van Loenen ◽  
S van Gelderen-Boele ◽  
J F Flinterman ◽  
W E Merz ◽  
F F G Rommerts

Abstract The biological properties of deglycosylated human chorionic gonadotropin (DhCG), obtained by hydrogen fluoride treatment (HF-DhCG) of intact hCG or by oligonucleotide-directed mutagenesis (CHO-DhCG), and that of their fully glycosylated counterparts, were tested in terms of cAMP and steroid production in rat Leydig cells and in mouse Leydig tumor cells (MA-10 cells). In both cell types, HF-DhCG and CHO-DhCG possessed comparable biological activities. The maximum for DhCG-induced cAMP production was approximately 12% of that of intact hCG when tested in rat Leydig cells, and only 2% when tested in MA-10 cells. DhCG possessed significant steroidogenic activity in both cell types. In MA-10 cells the maximum for DhCG-induced steroidogenesis was 30–50% of that of intact hCG, while in rat Leydig cells DhCG and hCG induced similar steroidogenic maxima. Based on its ED50, DhCG possessed 10–17% of the steroidogenic potency of intact hCG in rat Leydig cells, while in MA-10 cells DhCG was only 2-fold less potent than hCG. When accurate hormone-receptor binding data are absent, the intrinsic receptor-stimulating activity of a ligand can still be estimated at full receptor occupancy, provided that over the whole dose range the biological response is proportional to receptor stimulation. The present data show that in transfected MA-10(P+29) cells which over-express rat phosphodiesterase, the hormone-induced stimulation of cAMP and steroid production is directly coupled to receptor activation up to maximal occupation of the LH/CG receptor. The intrinsic receptor-stimulating activity of DhCG, measured in MA-10(P+29) cells in terms of DhCG-induced steroidogenesis, appeared to be 7- to 10-fold lower than that of intact hCG. As it is known from the literature that DhCG possesses 2- to 3-fold higher affinity to the LH/CG receptor than intact hCG, this increased binding affinity of DhCG may partly compensate for the 7- to 10-fold reduction in the intrinsic receptor-stimulating activity, resulting in only a 2-fold reduction in steroidogenic potency of DhCG. In terms of adenylyl cyclase stimulation in MA-10(P+29) cells, DhCG possessed approximately 50-fold lower receptor-stimulating activity than intact hCG, being similar to that observed in wild-type MA-10 cells. This study clearly shows that the oligosaccharide units in hCG are not essential for LH/CG receptor activation, and that the relative receptor-stimulating activity of DhCG to that of hCG is highly dependent on whether cAMP or steroid production is measured as an index for bioactivity, and whether bioactivity is tested in rat Leydig cells or MA-10 cells. Journal of Endocrinology (1995) 147, 367–375


2019 ◽  
Author(s):  
Koki Tsuyuzaki ◽  
Manabu Ishii ◽  
Itoshi Nikaido

AbstractComplex biological systems can be described as a multitude of cell-cell interactions (CCIs). Recent single-cell RNA-sequencing technologies have enabled the detection of CCIs and related ligand-receptor (L-R) gene expression simultaneously. However, previous data analysis methods have focused on only one-to-one CCIs between two cell types. To also detect many-to-many CCIs, we proposescTensor, a novel method for extracting representative triadic relationships (hypergraphs), which include (i) ligand-expression, (ii) receptor-expression, and (iii) L-R pairs. When applied to simulated and empirical datasets,scTensorwas able to detect some hypergraphs including paracrine/autocrine CCI patterns, which cannot be detected by previous methods.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A175-A175
Author(s):  
Kathrin Davari ◽  
Tristan Holland ◽  
Laura Prassmayer ◽  
Giulia Longinotti ◽  
Kenneth Ganley ◽  
...  

BackgroundThe cancer-testis antigen MAGE-A4 is an attractive target for T cell-based immunotherapy, especially for indications with unmet clinical need like non-small-cell lung carcinoma or triple-negative breast cancer. Overcoming high tumor burden using adoptive transfer of T cells modified to express a transgenic T cell receptor (TCR) demands optimal recognition of the corresponding target on tumor cells by the TCR-modified T cells (TCR-Ts). Here we describe the isolation and pre-clinical characterization of high avidity TCR-Ts expressing a human leucocyte antigen (HLA)-A*02:01-restricted MAGE-A4-specific TCR that is fully functional in T cells irrespective of CD4 or CD8 co-receptor expression.MethodsAn unbiased CD137-based sorting approach was first used to identify an immunogenic MAGE-A4-derived candidate epitope that was properly processed and presented on HLA-A2 molecules encoded by the HLA-A*02:01 allele. To isolate high avidity T cells via subsequent multimer sorting, an in vitro priming approach using HLA-A2-negative donors (allogeneic-HLA-restricted priming approach) was conducted to bypass central tolerance to this self-antigen. Pre-clinical parameters of safety and activity were assessed in a comprehensive set of in vitro and in vivo studies of the lead TCR candidate derived from a selected T cell clone.ResultsA TCR recognizing the MAGE-A4-derived decapeptide GVYDGREHTV was isolated from primed T cells of a non-tolerant HLA-A2-negative donor. The respective TCR-T cell product bbT485, expressing the lead TCR in T cells from healthy donors, was demonstrated pre-clinically to have a favorable safety profile and superior in vivo potency compared to TCR-Ts made using a TCR derived from an HLA-A2-positive donor bearing a tolerized T cell repertoire to self-antigens. The natural high avidity allogeneic (allo)-derived TCR was found to be CD8 co-receptor-independent, allowing effector functions to be elicited in transgenic CD4+ T helper cells. These CD4+ TCR-T cells not only supported an anti-tumor response by direct killing of MAGE-A4-positive tumor cells, but also upregulated hallmarks associated with helper function, such as CD154 expression and release of key cytokines upon tumor-specific stimulation.ConclusionsThe extensive pre-clinical assessment of safety and in vivo potency of this non-mutated high avidity, CD8 co-receptor-independent, MAGE-A4-specific HLA-A2 restricted TCR provide the basis for its use in clinical TCR-T immunotherapy studies. The ability of this co-receptor-independent TCR to activate all transduced T cells (irrespective of CD4 or CD8 expression) could potentially provide enhanced cellular responses in the clinical setting through the induction of functionally diverse T cell subsets that goes beyond what is currently tested in the clinic.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii65-ii65
Author(s):  
Michael Ruff ◽  
Reona Sakemura ◽  
Claudia Manriquez-Roman ◽  
Mehrdad Hefazi-Torghabeh ◽  
Kendall Schick ◽  
...  

Abstract BACKGROUND Chimeric antigen receptor T cell (CART) therapy has revolutionized the treatment landscape for hematological malignancies, its efficacy remains limited in solid tumors. EGFRvIII is a truncated version of the wild type EGFR in which deletion of exons 2–7 of the extracellular domain leads the variant (EGFRvIII) that is strongly antigenic and is mostly expressed on tumor cells. EGFR amplification (tEGFR) almost uniformly precedes the presence of EGFRvIII on tumor cells. The heterogeneity of surface receptor expression and immunosuppressive stromal microenvironment underscore the need to develop CART strategies to target multiple tumor antigens simultaneously. METHODS we generated tEGFR/EGFRvIII directed CAR construct by cloning a clinically relevant tEGFR and EGFRvIII specific scFv into a second generation CAR construct (41BB stimulated) in a third generation lentivirus backbone. This was used to transfect 293T cells and the generated lentivirus particles were used to transduce T cells and generate EGFRvIII/tEGFR CART cells. GBM primary patient derived cell lines were used in these experiments. These cells were passaged and maintained in patient derived xenograft models. RESULTS EGFRvIII/tEGFR directed CART cells exhibited potent antitumor activity against EGFRvIII/tEGFR + GBM cell lines: with 100% killing at 1.25:1, 2.5:1, 5:1 and 10:1 E:T ratio on multiple PDX cell lines with EGFRvIII expression and EGFR over-expression (greater than five copies of EGFR gene) at 24 hours of incubation. Conclusion: We demonstrate that targeting EGFRvIII and over-expressed EGFR with CART cells is feasible, efficacious and represents a promising therapeutic strategy to target GMB. Data from in vivo and combinatorial CART experiments will be reported at the meeting.


2001 ◽  
Vol 280 (4) ◽  
pp. C943-C953 ◽  
Author(s):  
Lalitha Gudipaty ◽  
Benjamin D. Humphreys ◽  
Gary Buell ◽  
George R. Dubyak

P2X receptors function as ATP-gated cation channels. The P2X7receptor subtype is distinguished from other P2X family members by a very low affinity for extracellular ATP (millimolar EC50) and its ability to trigger induction of nonselective pores on repeated or prolonged stimulation. Previous studies have indicated that certain P2X7receptor-positive cell types, such as human blood monocytes and murine thymocytes, lack this pore-forming response. In the present study we compared pore formation in response to P2X7receptor activation in human blood monocytes with that in macrophages derived from these monocytes by in vitro tissue culture. ATP induced nonselective pores in macrophages but not in freshly isolated monocytes when both cell types were identically stimulated in standard NaCl-based salines. However, ion substitution studies revealed that replacement of extracellular Na+and Cl−with K+and nonhalide anions strongly facilitated ATP-dependent pore formation in monocytes. These ionic conditions also resulted in increased agonist affinity, such that 30–100 μM ATP was sufficient for activation of nonselective pores by P2X7receptors. Comparison of P2X7receptor expression in blood monocytes with that in macrophages indicated no differences in steady-state receptor mRNA levels but significant increases (up to 10-fold) in the amount of immunoreactive P2X7receptor protein at the cell surface of macrophages. Thus ability of ATP to activate nonselective pores in cells that natively express P2X7receptors can be modulated by receptor subunit density at the cell surface and ambient levels of extracellular Na+and Cl−. These mechanisms may prevent adventitious P2X7receptor activation in monocytes until these proinflammatory leukocytes migrate to extravascular sites of tissue damage.


Sign in / Sign up

Export Citation Format

Share Document