scholarly journals Age-related dedifferentiation and hyperdifferentiation of perceptual and mnemonic representations

2020 ◽  
Author(s):  
Lifu Deng ◽  
Simon W. Davis ◽  
Zachary A. Monge ◽  
Erik A. Wing ◽  
Benjamin R. Geib ◽  
...  

AbstractPreliminary evidence indicates that occipito-temporal activation patterns for different visual stimuli are less distinct in older (OAs) than younger (YAs) adults, suggesting a dedifferentiation of visual representations with aging. Yet, it is unclear if this deficit (1) affects only sensory or also categorical aspects of visual representations, and (2) affects only perceptual or also mnemonic representations. To investigate these issues, we fMRI-scanned YAs and OAs viewing and then remembering visual scenes. First, using representational similarity analyses, we distinguished sensory vs. categorical features of visual representations. We found that, compared to YAs, sensory features in early visual cortex were less differentiated in OAs (i.e., age-related dedifferentiation), replicating previous research, whereas categorical features in anterior temporal lobe (ATL) were more differentiated in OAs. This is, to our knowledge, the first report of an age-related hyperdifferentiation. Second, we assessed the quality of mnemonic representations by measuring encoding-retrieval similarity (ERS) in activation patterns. We found that aging attenuated ERS in early visual cortex and hippocampus but enhanced ERS in ATL. Thus, both visual and mnemonic representations in ATL were enhanced by aging. In sum, our findings suggest that aging impairs visual and mnemonic representations in posterior brain regions but enhances them in anterior regions.

2020 ◽  
Author(s):  
Munendo Fujimichi ◽  
Hiroki Yamamoto ◽  
Jun Saiki

Are visual representations in the human early visual cortex necessary for visual working memory (VWM)? Previous studies suggest that VWM is underpinned by distributed representations across several brain regions, including the early visual cortex. Notably, in these studies, participants had to memorize images under consistent visual conditions. However, in our daily lives, we must retain the essential visual properties of objects despite changes in illumination or viewpoint. The role of brain regions—particularly the early visual cortices—in these situations remains unclear. The present study investigated whether the early visual cortex was essential for achieving stable VWM. Focusing on VWM for object surface properties, we conducted fMRI experiments while male and female participants performed a delayed roughness discrimination task in which sample and probe spheres were presented under varying illumination. By applying multi-voxel pattern analysis to brain activity in regions of interest, we found that the ventral visual cortex and intraparietal sulcus were involved in roughness VWM under changing illumination conditions. In contrast, VWM was not supported as robustly by the early visual cortex. These findings show that visual representations in the early visual cortex alone are insufficient for the robust roughness VWM representation required during changes in illumination.


2018 ◽  
Author(s):  
Engelen T. ◽  
Rademaker R.L. ◽  
Sack A.T

AbstractIn the complete absence of small transients in visual inputs (e.g. by experimentally stabilizing an image on the retina, or in everyday life during intent staring), information perceived by the eyes will fade from the perceptual experience. While the mechanisms of visual fading remain poorly understood, one possibility is that higher-level brain regions actively suppress the stable visual signals via targeted inhibitory feedback onto Early Visual Cortex (EVC). Here, we used positive afterimages and multisensory conflict to induce gestaltlike fading of participants’ own hands. In two separate experiments, participants rated the perceived quality of their hands both before and after Transcranial Magnetic Stimulation (TMS) was applied over EVC. In a first experiment, triple pulse TMS was able to make a faded hand appear less faded after the pulses were applied, compared to placebo pulses. A second experiment demonstrated that this was because triple pulse TMS inoculated the removed hand from fading over time. Interestingly, TMS similarly affected the left and right hand, despite being applied only over right EVC. Together, our results suggest that TMS can lift inhibitory processes in EVC and reverse the effects of visual fading. And it might do so by crossing transcollosal connections, or via multimodal integration sites in which both hands are represented.


2018 ◽  
Author(s):  
Sarah K. Kaufman ◽  
Kelly Del Tredici ◽  
Talitha L. Thomas ◽  
Heiko Braak ◽  
Marc I. Diamond

AbstractAlzheimer’s disease (AD) is characterized by accumulation of tau neurofibrillary tangles (NFTs) and, according to the prion model, transcellular propagation of pathological “seeds” may underlie its progression. Staging of NFT pathology with phospho-tau antibody is useful to classify AD and primary age-related tauopathy (PART) cases. The locus coeruleus (LC) shows the earliest phospho-tau signal, whereas other studies suggest that pathology begins in the transentorhinal/entorhinal cortices (TRE/EC). The relationship of tau seeding activity, phospho-tau pathology, and progression of neurodegeneration remains obscure. Consequently, we employed an established cellular biosensor assay to quantify tau seeding activity in fixed human tissue, in parallel with AT8 phospho-tau staining of immediately adjacent sections. We studied four brain regions from each of n=247 individuals across a range of disease stages. We detected the earliest and most robust seeding activity in the TRE/EC. The LC did not uniformly exhibit seeding activity until later NFT stages. We also detected seeding activity in the first temporal gyrus and visual cortex at stages before NFTs and/or AT8-immunopositivity were detectable. AD and putative PART cases exhibited similar patterns of seeding activity that anticipated histopathology across all NFT stages. Our findings are consistent with the prion model and suggest that pathological seeding activity begins in the TRE/EC rather than in the LC, and may offer an important addition to classical histopathology.


2010 ◽  
Vol 104 (1) ◽  
pp. 76-87 ◽  
Author(s):  
John T. Serences ◽  
Sameer Saproo

Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives.


2020 ◽  
Author(s):  
Ke Bo ◽  
Siyang Yin ◽  
Yuelu Liu ◽  
Zhenhong Hu ◽  
Sreenivasan Meyyapan ◽  
...  

AbstractThe perception of opportunities and threats in complex scenes represents one of the main functions of the human visual system. In the laboratory, its neurophysiological basis is often studied by having observers view pictures varying in affective content. This body of work has consistently shown that viewing emotionally engaging, compared to neutral, pictures (1) heightens blood flow in limbic structures and frontoparietal cortex, as well as in anterior ventral and dorsal visual cortex, and (2) prompts an increase in the late positive event-related potential (LPP), a scalp-recorded and time-sensitive index of engagement within the network of aforementioned neural structures. The role of retinotopic visual cortex in this process has, however, been contentious, with competing theoretical notions predicting the presence versus absence of emotion-specific signals in retinotopic visual areas. The present study used multimodal neuroimaging and machine learning to address this question by examining the large-scale neural representations of affective pictures. Recording EEG and fMRI simultaneously while observers viewed pleasant, unpleasant, and neutral affective pictures, and applying multivariate pattern analysis to single-trial BOLD activities in retinotopic visual cortex, we identified three robust findings: First, unpleasant-versus-neutral decoding accuracy, as well as pleasant-versus-neutral decoding accuracy, were well above chance level in all retinotopic visual areas, including primary visual cortex. Second, the decoding accuracy in ventral visual cortex, but not in early visual cortex or dorsal visual cortex, was significantly correlated with LPP amplitude. Third, effective connectivity from amygdala to ventral visual cortex predicted unpleasant-versus-neutral decoding accuracy, and effective connectivity from ventral frontal cortex to ventral visual cortex predicted pleasant-versus-neutral decoding accuracy. These results suggest that affective pictures evoked valence-specific multivoxel neural representations in retinotopic visual cortex and that these multivoxel representations were influenced by reentry signals from limbic and frontal brain regions.


2021 ◽  
Author(s):  
Molly Simmonite ◽  
Thad A Polk

According to the neural dedifferentiation hypothesis, age-related reductions in the distinctiveness of neural representations contribute to sensory, cognitive, and motor declines associated with aging: neural activity associated with different stimulus categories becomes more confusable with age and behavioural performance suffers as a result. Initial studies investigated age-related dedifferentiation in the visual cortex, but subsequent research has revealed declines in other brain regions, suggesting that dedifferentiation may be a general feature of the aging brain. In the present study, we used functional magnetic resonance imaging to investigate age-related dedifferentiation in the visual, auditory, and motor cortices. Participants were 58 young adults and 79 older adults. The similarity of activation patterns across different blocks of the same condition was calculated (within-condition correlation, a measure of reliability) as was the similarity of activation patterns elicited by different conditions (between-category correlations, a measure of confusability). Neural distinctiveness was defined as the difference between the mean within- and between-condition similarity. We found age-related reductions in neural distinctiveness in the visual, auditory, and motor cortices, which were driven by both decreases in within-category similarity and increases in between-category similarity. There were significant positive cross-region correlations between neural distinctiveness in different regions. These correlations were driven by within-category similarities, a finding that indicates that declines in the reliability of neural activity appear to occur in tandem across the brain. These findings suggest that the changes in neural distinctiveness that occur in healthy aging result from changes in both the reliability and confusability of patterns of neural activity.


2020 ◽  
Vol 40 (12) ◽  
pp. 2475-2490 ◽  
Author(s):  
Ben Schager ◽  
Craig E Brown

Vessel loss in the aging brain is commonly reported, yet important questions remain concerning whether there are regional vulnerabilities and what mechanisms could account for these regional differences, if they exist. Here we imaged and quantified vessel length, tortuosity and width in 15 brain regions in young adult and aged mice. Our data indicate that vessel loss was most pronounced in white matter followed by cortical, then subcortical grey matter regions, while some regions (visual cortex, amygdala, thalamus) showed no decline with aging. Regions supplied by the anterior cerebral artery were more vulnerable to loss than those supplied by middle or posterior cerebral arteries. Vessel width and tortuosity generally increased with age but neither reliably predicted regional vessel loss. Since capillaries are naturally prone to plugging and prolonged obstructions often lead to vessel pruning, we hypothesized that regional susceptibilities to plugging could help predict vessel loss. By mapping the distribution of microsphere-induced capillary obstructions, we discovered that regions with a higher density of persistent obstructions were more likely to show vessel loss with aging and vice versa. These findings indicate that age-related vessel loss is region specific and can be explained, at least partially, by regional susceptibilities to capillary plugging.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gunnar K. Gouras

Age-related misfolding and aggregation of disease-linked proteins in selective brain regions is a characteristic of neurodegenerative diseases. Although neuropathological aggregates that characterize these various diseases are found at sites other than synapses, increasing evidence supports the idea that synapses are where the pathogenesis begins. Understanding these diseases is hampered by our lack of knowledge of what the normal functions of these proteins are and how they are affected by aging. Evidence has supported the idea that neurodegenerative disease-linked proteins have a common propensity for prion protein-like cell-to-cell propagation. However, it is not thought that the prion-like quality of these proteins/peptides that allows their cell-to-cell transmission implies a role for human-to-human spread in common age-related neurodegenerative diseases. It will be important to better understand the molecular and cellular mechanisms governing the role of these aggregating proteins in neural function, especially at synapses, how their propagation occurs and how pathogenesis is promoted by aging.


2018 ◽  
Author(s):  
Poortata Lalwani ◽  
Holly Gagnon ◽  
Kaitlin Cassady ◽  
Molly Simmonite ◽  
Scott Peltier ◽  
...  

AbstractNeural activation patterns in the ventral visual cortex in response to different categories of visual stimuli (e.g., faces vs. houses) are less selective, or distinctive, in older adults than in younger adults, a phenomenon known as age-related neural dedifferentiation. Previous work in animals suggests that age-related reductions of the inhibitory neurotransmitter, gamma aminobutyric acid (GABA), may play a role in this age-related decline in neural distinctiveness. In this study, we investigated whether neural dedifferentiation extends to auditory cortex and whether individual differences in GABA are associated with individual differences in neural distinctiveness in humans. 20 healthy young adults (ages 18-29) and 23 healthy older adults (over 65) completed a functional magnetic resonance imaging (fMRI) scan, during which neural activity was estimated while they listened to foreign speech and music. GABA levels in the auditory, ventrovisual and sensorimotor cortex were estimated in the same individuals in a separate magnetic resonance spectroscopy (MRS) scan. Relative to the younger adults, the older adults exhibited both (1) less distinct activation patterns for music vs. speech stimuli and (2) lower GABA levels in the auditory cortex. Also, individual differences in auditory GABA levels (but not ventrovisual or sensorimotor GABA levels) predicted individual differences in neural distinctiveness in the auditory cortex in the older adults. These results demonstrate that age-related neural dedifferentiation extends to the auditory cortex and suggest that declining GABA levels may play a role in neural dedifferentiation in older adults.Significance StatementPrior work has revealed age-related neural dedifferentiation in the visual cortex. GABA levels also decline with age in several parts of the human cortex. Here, we report that these two age-related changes are linked; neural dedifferentiation is associated with lower GABA levels in older adults. We also show that age-related neural dedifferentiation extends to auditory cortex, suggesting that it may be a general feature of the aging brain. These findings provide novel insights into the neurochemical basis of age-related neural dedifferentiation in humans and also offer a potential new avenue for investigating age-related declines in central auditory processing.


2019 ◽  
Author(s):  
Christoph Koch ◽  
Shu-Chen Li ◽  
Thad A. Polk ◽  
Nicolas W. Schuck

AbstractHuman aging is characterized by impaired spatial cognition and reductions in the distinctiveness of category-specific fMRI activation patterns. Yet, little is know about age-related decline in neural distinctiveness of spatial information. Here, we asked whether neural tuning functions of walking direction are broadened in older versus younger adults. To test this idea, we developed a novel method that allowed us to investigate changes in fMRI-measured pattern similarity while participants navigated in different directions in a virtual spatial navigation task. We expected that directional tuning functions would be broader in older adults, and thus activation patterns that reflect neighboring directions would be less distinct as compared to non-adjacent directions. Because loss of distinctiveness leads to more confusions when information is read out by downstream areas, we analyzed predictions of a decoder trained on these representations and asked (1) whether decoder confusions between two directions increase proportionally to their angular similarity, (2) and how this effect may differ between age groups. Evidence for tuning-function-like signals was found in the retrosplenial complex and primary visual cortex. Significant age differences in tuning width, however, were only found in the primary visual cortex, suggesting that less precise visual information could lead to worse directional signals in older adults. Yet, age differences in visual tuning were not related to behavior. Instead, directional information encoded in RSC correlated with memory on task. These results shed new light on neural mechanisms underling age-related spatial navigation impairments and introduce a novel approach to measure tuning specificity using fMRI.


Sign in / Sign up

Export Citation Format

Share Document