scholarly journals Novel rabies virus variant for bi-directional optical control reveals modulatory influence of the pulvinar on visual cortex in rat

2020 ◽  
Author(s):  
LR Scholl ◽  
L Zhang ◽  
AT Foik ◽  
DC Lyon

AbstractOptogenetic tools have become of great utility in the causal analysis of systems in the brain. However, current optogenetic techniques do not reliably support both excitation and suppression of the same cells in vivo, limiting analysis and slowing research. Here we developed a novel glycoprotein-deleted rabies virus expressing two channelrhodopsin proteins, GtACR2 and Chrimson, in order to independently manipulate excitatory and inhibitory transmembrane potentials, respectively. Using this approach, we demonstrated that rodent pulvinar neurons modulate cortical size tuning and suppress flash responses, but do not drive activity in visual cortex. While our goal was primarily to develop this novel method to study the structure-function organization of thalamocortical circuits, this technique is readily applicable to study any brain region.

2020 ◽  
Author(s):  
Monique S. Mendes ◽  
Jason Atlas ◽  
Zachary Brehm ◽  
Antonio Ladron-de-Guevara ◽  
Matthew N. McCall ◽  
...  

AbstractMicroglia are the resident immune cells in the brain with the capacity to autonomously self-renew. Under basal conditions, microglial self-renewal appears to be slow and stochastic, although microglia have the ability to proliferate very rapidly following depletion or in response to injury. Because microglial self-renewal has largely been studied using static tools, the mechanisms and kinetics by which microglia renew and acquire mature characteristics in the adult brain are not well understood. Using chronic in vivo two-photon imaging in awake mice and PLX5622 (Colony stimulating factor 1 receptor (CSF1R) inhibitor) to deplete microglia, we set out to understand the dynamic self-organization and maturation of microglia following depletion in the visual cortex. We confirm that under basal conditions, cortical microglia show limited turnover and migration. Following depletion, however, microglial repopulation is remarkably rapid and is sustained by the dynamic division of the remaining microglia in a manner that is largely independent of signaling through the P2Y12 receptor. Mathematical modeling of microglial division demonstrates that the observed division rates can account for the rapid repopulation observed in vivo. Additionally, newly-born microglia resemble mature microglia, in terms of their morphology, dynamics and ability to respond to injury, within days of repopulation. Our work suggests that microglia rapidly self-renew locally, without the involvement of a special progenitor cell, and that newly born microglia do not recapitulate a slow developmental maturation but instead quickly take on mature roles in the nervous system.Graphical Abstract(a) Microglial dynamics during control condition. Cartoon depiction of the heterogenous microglia in the visual cortex equally spaced. (b) During the early stages of repopulation, microglia are irregularly spaced and sparse. (c) During the later stages of repopulation, the number of microglia and the spatial distribution return to baseline. (d-f) We then created and ran a mathematical model that sampled the number of microglia, (d) the persistent doublets, (e) the rapid divisions of microglia and (f) the secondary divisions of microglia during the peak of repopulation day 2-day 3. The mathematical model suggested that residual microglia can account for the rapid repopulation we observed in vivo.


2021 ◽  
Author(s):  
Sara Cadoni ◽  
Charlie Demene ◽  
Matthieu Provansal ◽  
Diep Nguyen ◽  
Dasha Nelidova ◽  
...  

Remote, precisely controlled activation of the brain is a fundamental challenge in the development of brain machine interfaces providing feasible rehabilitation strategies for neurological disorders. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, but this approach lacks spatial resolution and cellular selectivity and loads the brain with high levels of acoustic energy. The combination of the expression of ultrasound-sensitive proteins with ultrasound stimulation (sonogenetic stimulation) can provide cellular selectivity and higher sensitivity, but such strategies have been subject to severe limitations in terms of spatiotemporal resolution in vivo, precluding their use for real-life applications. We used the expression of large-conductance mechanosensitive ion channels (MscL) with high-frequency ultrasonic stimulation for a duration of milliseconds to activate neurons selectively at a relatively high spatiotemporal resolution in the rat retina ex vivo and the primary visual cortex of rodents in vivo. This spatiotemporal resolution was achieved at low energy levels associated with negligible tissue heating and far below those leading to complications in ultrasound neuromodulation. We showed, in an associative learning test, that sonogenetic stimulation of the visual cortex generated light perception. Our findings demonstrate that sonogenetic stimulation is compatible with millisecond pattern presentation for visual restoration at the cortical level. They represent a step towards the precise transfer of information over large distances to the cortical and subcortical regions of the brain via an approach less invasive than that associated with current brain machine interfaces and with a wide range of applications in neurological disorders.


2015 ◽  
Vol 90 (4) ◽  
pp. 2031-2038 ◽  
Author(s):  
Cathleen Pfefferkorn ◽  
Carsten Kallfass ◽  
Stefan Lienenklaus ◽  
Julia Spanier ◽  
Ulrich Kalinke ◽  
...  

ABSTRACTInterferon beta (IFN-β) is a key component of cellular innate immunity in mammals, and it constitutes the first line of defense during viral infection. Studies with cultured cells previously showed that almost all nucleated cells are able to produce IFN-β to various extents, but information about thein vivosources of IFN-β remains incomplete. By applying immunohistochemistry and employing conditional-reporter mice that express firefly luciferase under the control of the IFN-β promoter in either all or only distinct cell types, we found that astrocytes are the main producers of IFN-β after infection of the brain with diverse neurotropic viruses, including rabies virus, Theiler's murine encephalomyelitis virus, and vesicular stomatitis virus. Analysis of a panel of knockout mouse strains revealed that sensing of viral components via both RIG-I-like helicases and Toll-like receptors contributes to IFN induction in the infected brain. A genetic approach to permanently mark rabies virus-infected cells in the brain showed that a substantial number of astrocytes became labeled and, therefore, must have been infected by the virus at least transiently. Thus, our results strongly indicate that abortive viral infection of astrocytes can trigger pattern recognition receptor signaling events which result in secretion of IFN-β that confers antiviral protection.IMPORTANCEPrevious work indicated that astrocytes are the main producers of IFN after viral infection of the central nervous system (CNS), but it remained unclear how astrocytes might sense those viruses which preferentially replicate in neurons. We have now shown that virus sensing by both RIG-I-like helicases and Toll-like receptors is involved. Our results further demonstrate that astrocytes get infected in a nonproductive manner under these conditions, indicating that abortive infection of astrocytes plays a previously unappreciated role in the innate antiviral defenses of the CNS.


2017 ◽  
Author(s):  
Shigenori Inagaki ◽  
Masakazu Agetsuma ◽  
Shinya Ohara ◽  
Toshio Iijima ◽  
Tetsuichi Wazawa ◽  
...  

AbstractElectrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Conversely, however, various technical limitations of conventional recording methods have limited its applicability to freely moving subjects, especially when they are in a group and socially interacting with each other. Here, we propose a new method to overcome these technical limitations by introducing a bioluminescent voltage indicator called LOTUS-V. Using our simple and fiber-free recording method, named “SNIPA,” we succeeded in capturing brain activity in freely-locomotive mice, without the need for complicated instruments. This novel method further allowed us to simultaneously record from multiple independently-locomotive animals that were interacting with one another. Further, we successfully demonstrated that the primary visual cortex was activated during the interaction. This methodology will further facilitate a wide range of studies in neurobiology and psychiatry.


2018 ◽  
Author(s):  
I-Wen Chen ◽  
Emiliano Ronzitti ◽  
Brian R. Lee ◽  
Tanya L. Daigle ◽  
Hongkui Zeng ◽  
...  

AbstractSelective control of action potential generation in individual cells from a neuronal ensemble is desirable for dissecting circuit mechanisms underlying perception and behavior. Here, by using two-photon (2P) temporally focused computer-generated holography (TF-CGH), we demonstrate optical manipulation of neuronal excitability at the supragranular layers of anesthetized mouse visual cortex. Utilizing amplified laser-pulses delivered via a localized holographic spot, our optical system achieves suprathreshold activation by exciting either of the three optogenetic actuators, ReaChR, CoChR or ChrimsonR, with brief illumination (≤ 10 ms) at moderate excitation power ((in average ≤ 0.2 mW/µm2 corresponding to ≤ 25 mW/cell). Using 2P-guided whole-cell or cell-attached recordings in positive neurons expressing respective opsin in vivo, we find that parallel illumination induces spikes of millisecond temporal resolution and sub-millisecond precision, which are preserved upon repetitive illuminations up to tens of Hz. Holographic stimulation thus enables temporally precise optogenetic activation independently of opsin’s channel kinetics. Furthermore, we demonstrate that parallel optogenetic activation can be combined with functional imaging for all-optical control of a neuronal sub-population that co-expresses the photosensitive opsin ReaChR and the calcium indicator GCaMP6s. Parallel optical control of neuronal activity with cellular resolution and millisecond temporal precision should be advantageous for investigating neuronal connections and further yielding causal links between connectivity, microcircuit dynamics, and brain functions.Significance statementRecent development of optogenetics allows probing the neuronal microcircuit with light by optically actuating genetically-encoded light-sensitive opsins expressed in the target cells. Here, we apply holographic light shaping and temporal focusing to simultaneously deliver axially-confined holographic patterns to opsin-positive cells situated in the living mouse cortex. Parallel illumination efficiently induces action potentials with high temporal resolution and precision for three opsins of different kinetics. We demonstrated all-optical experiments by extending the parallel optogenetic activation at low intensity to multiple neurons and concurrently monitoring their calcium dynamics. These results demonstrate fast and temporally precise in vivo control of a neuronal sub-population, opening new opportunities to reveal circuit mechanisms underlying brain functions.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


Author(s):  
Enrico D.F. Motti ◽  
Hans-Georg Imhof ◽  
Gazi M. Yasargil

Physiologists have devoted most attention in the cerebrovascular tree to the arterial side of the circulation which has been subdivided in three levels: 1) major brain arteries which keep microcirculation constant despite changes in perfusion pressure; 2) pial arteries supposed to be effectors regulating microcirculation; 3) intracerebral arteries supposed to be deprived of active cerebral blood flow regulating devices.The morphological search for microvascular effectors in the cerebrovascular bed has been elusive. The opaque substance of the brain confines in vivo investigation to the superficial pial arteries. Most morphologists had to limit their observation to the random occurrence of a favorable site in the practically two-dimensional thickness of diaphanized histological sections. It is then not surprising most investigators of the cerebral microcirculation refer to an homogeneous network of microvessels interposed between arterioles and venules.We have taken advantage of the excellent depth of focus afforded by the scanning electron microscope (SEM) to investigate corrosion casts obtained injecting a range of experimental animals with a modified Batson's acrylic mixture.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


Sign in / Sign up

Export Citation Format

Share Document