scholarly journals Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain

2015 ◽  
Vol 90 (4) ◽  
pp. 2031-2038 ◽  
Author(s):  
Cathleen Pfefferkorn ◽  
Carsten Kallfass ◽  
Stefan Lienenklaus ◽  
Julia Spanier ◽  
Ulrich Kalinke ◽  
...  

ABSTRACTInterferon beta (IFN-β) is a key component of cellular innate immunity in mammals, and it constitutes the first line of defense during viral infection. Studies with cultured cells previously showed that almost all nucleated cells are able to produce IFN-β to various extents, but information about thein vivosources of IFN-β remains incomplete. By applying immunohistochemistry and employing conditional-reporter mice that express firefly luciferase under the control of the IFN-β promoter in either all or only distinct cell types, we found that astrocytes are the main producers of IFN-β after infection of the brain with diverse neurotropic viruses, including rabies virus, Theiler's murine encephalomyelitis virus, and vesicular stomatitis virus. Analysis of a panel of knockout mouse strains revealed that sensing of viral components via both RIG-I-like helicases and Toll-like receptors contributes to IFN induction in the infected brain. A genetic approach to permanently mark rabies virus-infected cells in the brain showed that a substantial number of astrocytes became labeled and, therefore, must have been infected by the virus at least transiently. Thus, our results strongly indicate that abortive viral infection of astrocytes can trigger pattern recognition receptor signaling events which result in secretion of IFN-β that confers antiviral protection.IMPORTANCEPrevious work indicated that astrocytes are the main producers of IFN after viral infection of the central nervous system (CNS), but it remained unclear how astrocytes might sense those viruses which preferentially replicate in neurons. We have now shown that virus sensing by both RIG-I-like helicases and Toll-like receptors is involved. Our results further demonstrate that astrocytes get infected in a nonproductive manner under these conditions, indicating that abortive infection of astrocytes plays a previously unappreciated role in the innate antiviral defenses of the CNS.

Author(s):  
Shawn Regis ◽  
Manisha Jassal ◽  
Sina Youssefian ◽  
Nima Rahbar ◽  
Sankha Bhowmick

Fibronectin plays a crucial role in adhesion of several cell types, mainly due to the fact that it is recognized by at least ten different integrin receptors. Since most cell types can bind to fibronectin, it becomes involved in many various biological processes. The interaction of cells with ECM proteins such as fibronectin provides the signals affecting morphology, motility, gene expression, and survival of cells [1]. Fibronectin exists in both soluble and insoluble forms; soluble fibronectin is secreted by cells and exits in cell media or body fluids, whereas insoluble fibronectin exists in tissues or the extracellular matrix of cultured cells [2]. The ability to control adsorption of fibronectin on tissue engineering scaffolds would therefore play a huge role in controlling cell attachment and survival in vivo. This can be achieved through surface functionalization of the scaffolds. The goal of these studies is to use molecular dynamics (MD) simulations to mechanistically understand how fibronectin adsorption is enhanced by surface functionalization of submicron scaffolds.


2018 ◽  
Vol 20 (1) ◽  
pp. 19 ◽  
Author(s):  
Yadong Wei ◽  
Krishan Chhiba ◽  
Fengrui Zhang ◽  
Xujun Ye ◽  
Lihui Wang ◽  
...  

Sialic acid-binding Ig-like lectin 8 (Siglec-8) is expressed on the surface of human eosinophils, mast cells, and basophils—cells that participate in allergic and other diseases. Ligation of Siglec-8 by specific glycan ligands or antibodies triggers eosinophil death and inhibits mast cell degranulation; consequences that could be leveraged as treatment. However, Siglec-8 is not expressed in murine and most other species, thus limiting preclinical studies in vivo. Based on a ROSA26 knock-in vector, a construct was generated that contains the CAG promoter, a LoxP-floxed-Neo-STOP fragment, and full-length Siglec-8 cDNA. Through homologous recombination, this Siglec-8 construct was targeted into the mouse genome of C57BL/6 embryonic stem (ES) cells, and chimeric mice carrying the ROSA26-Siglec-8 gene were generated. After cross-breeding to mast cell-selective Cre-recombinase transgenic lines (CPA3-Cre, and Mcpt5-Cre), the expression of Siglec-8 in different cell types was determined by RT-PCR and flow cytometry. Peritoneal mast cells (dual FcεRI+ and c-Kit+) showed the strongest levels of surface Siglec-8 expression by multicolor flow cytometry compared to expression levels on tissue-derived mast cells. Siglec-8 was seen on a small percentage of peritoneal basophils, but not other leukocytes from CPA3-Siglec-8 mice. Siglec-8 mRNA and surface protein were also detected on bone marrow-derived mast cells. Transgenic expression of Siglec-8 in mice did not affect endogenous numbers of mast cells when quantified from multiple tissues. Thus, we generated two novel mouse strains, in which human Siglec-8 is selectively expressed on mast cells. These mice may enable the study of Siglec-8 biology in mast cells and its therapeutic targeting in vivo.


2018 ◽  
Vol 116 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Erol C. Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.


2021 ◽  
Author(s):  
Chengjin Ye ◽  
Kevin Chiem ◽  
Jun-Gyu Park ◽  
Jesus Silvas ◽  
Desarey Morales Vasquez ◽  
...  

Replication-competent recombinant viruses expressing reporter genes provide valuable tools to investigate viral infection. Low levels of reporter gene expressed from previous reporter-expressing rSARS-CoV-2 have jeopardized their use to monitor the dynamics of SARS-CoV-2 infection in vitro or in vivo. Here, we report an alternative strategy where reporter genes were placed upstream of the viral nucleocapsid gene followed by a 2A cleavage peptide. The higher levels of reporter expression using this strategy resulted in efficient visualization of rSARS-CoV-2 in infected cultured cells and K18 hACE2 transgenic mice. Importantly, real-time viral infection was readily tracked using a non-invasive in vivo imaging system and allowed us to rapidly identify antibodies which are able to neutralize SARS-CoV-2 infection in vivo. Notably, these reporter-expressing rSARS-CoV-2 retained wild-type virus like pathogenicity in vivo, supporting their use to investigate viral infection, dissemination, pathogenesis and therapeutic interventions for the treatment of SARS-CoV-2 in vivo.


2018 ◽  
Author(s):  
Erol Can Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

ABSTRACTMitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell-types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially-localized 3XHA epitope-tag (“MITO-Tag”) for the fast isolation of mitochondria from cultured cells to now generate “MITO-Tag Mice.” Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology and our strategy should be generally applicable for studying other mammalian organelles in specific cell-types in vivo.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Jennifer Martynowicz ◽  
J. Stone Doggett ◽  
William J. Sullivan

ABSTRACT Toxoplasma gondii, an obligate intracellular parasite that can cause life-threatening acute disease, differentiates into a quiescent cyst stage to establish lifelong chronic infections in animal hosts, including humans. This tissue cyst reservoir, which can reactivate into an acute infection, is currently refractory to clinically available therapeutics. Recently, we and others have discovered drugs capable of significantly reducing the brain cyst burden in latently infected mice, but not to undetectable levels. In this study, we examined the use of novel combination therapies possessing multiple mechanisms of action in mouse models of latent toxoplasmosis. Our drug regimens included combinations of pyrimethamine, clindamycin, guanabenz, and endochin-like quinolones (ELQs) and were administered to two different mouse strains in an attempt to eradicate brain tissue cysts. We observed mouse strain-dependent effects with these drug treatments: pyrimethamine-guanabenz showed synergistic efficacy in C57BL/6 mice yet did not improve upon guanabenz monotherapy in BALB/c mice. Contrary to promising in vitro results demonstrating toxicity to bradyzoites, we observed an antagonistic effect between guanabenz and ELQ-334 in vivo. While we were unable to completely eliminate the brain cyst burden, we found that a combination treatment with ELQ-334 and pyrimethamine impressively reduced the brain cyst burden by 95% in C57BL/6 mice, which approached the limit of detection. These analyses highlight the importance of evaluating anti-infective drugs in multiple mouse strains and will help inform further preclinical studies of cocktail therapies designed to treat chronic toxoplasmosis.


2003 ◽  
Vol 358 (1432) ◽  
pp. 787-795 ◽  
Author(s):  
Susumu Tonegawa ◽  
Kazu Nakazawa ◽  
Matthew A. Wilson

Our primary research interest is to understand the molecular and cellular mechanisms on neuronal circuitry underlying the acquisition, consolidation and retrieval of hippocampus-dependent memory in rodents. We study these problems by producing genetically engineered (i.e. spatially targeted and/or temporally restricted) mice and analysing these mice by multifaceted methods including molecular and cellular biology, in vitro and in vivo physiology and behavioural studies. We attempt to identify deficits at each of the multiple levels of complexity in specific brain areas or cell types and deduce those deficits that underlie specific learning or memory. We will review our recent studies on the acquisition, consolidation and recall of memories that have been conducted with mouse strains in which genetic manipulations were targeted to specific types of cells in the hippocampus or forebrain of young adult mice.


2019 ◽  
Vol 12 (563) ◽  
pp. eaau0240 ◽  
Author(s):  
Lee Roth ◽  
Jean Wakim ◽  
Elad Wasserman ◽  
Moran Shalev ◽  
Esther Arman ◽  
...  

Bone resorption by osteoclasts is essential for bone homeostasis. The kinase Src promotes osteoclast activity and is activated in osteoclasts by the receptor-type tyrosine phosphatase PTPROt. In other contexts, however, PTPROt can inhibit Src activity. Through in vivo and in vitro experiments, we show that PTPROt is bifunctional and can dephosphorylate Src both at its inhibitory residue Tyr527and its activating residue Tyr416. Whereas wild-type and PTPROt knockout mice exhibited similar bone masses, mice in which a putative C-terminal phosphorylation site, Tyr399, in endogenous PTPROt was replaced with phenylalanine had increased bone mass and reduced osteoclast activity. Osteoclasts from the knock-in mice also showed reduced Src activity. Experiments in cultured cells and in osteoclasts derived from both mouse strains demonstrated that the absence of phosphorylation at Tyr399caused PTPROt to dephosphorylate Src at the activating site pTyr416. In contrast, phosphorylation of PTPROt at Tyr399enabled PTPROt to recruit Src through Grb2 and to dephosphorylate Src at the inhibitory site Tyr527, thus stimulating Src activity. We conclude that reversible phosphorylation of PTPROt at Tyr399is a molecular switch that selects between its opposing activities toward Src and maintains a coherent signaling output, and that blocking this phosphorylation event can induce physiological effects in vivo. Because most receptor-type tyrosine phosphatases contain potential phosphorylation sites at their C termini, we propose that preventing phosphorylation at these sites or its consequences may offer an alternative to inhibiting their catalytic activity to achieve therapeutic benefit.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1208 ◽  
Author(s):  
Michael J. Garabedian ◽  
Charles A. Harris ◽  
Freddy Jeanneteau

Glucocorticoids via the glucocorticoid receptor (GR) have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using in vitro and cell culture–based approaches, how GR responds to changes in external signals in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.


2020 ◽  
Author(s):  
Katrin Mangold ◽  
Jan Mašek ◽  
Jingyan He ◽  
Urban Lendahl ◽  
Elaine Fuchs ◽  
...  

ABSTRACTGene variants associated with disease are efficiently identified with whole genome sequencing or GWAS, but validation in vivo lags behind. We developed NEPTUNE (neural plate targeting by in utero nanoinjection), to rapidly and flexibly introduce gene expression-modifying viruses to the embryonic murine neural plate prior to neurulation, to target the future adult nervous system. Stable integration in >95% of cells in the brain enabled long-term gain- or loss-of-function, and conditional expression was achieved using mini-promotors for cell types of interest. Using NEPTUNE, we silenced Sptbn2, a gene associated with Spinocerebellar ataxia type 5 (SCA5) in humans. Silencing of Sptbn2 induced severe neural tube defects and embryo resorption, suggesting that SPTBN2 in-frame and missense deletions in SCA5 reflect hypomorphic or neomorphic functions, not loss of function. In conclusion, NEPTUNE offers a novel, rapid and cost-effective technique to test gene function in brain development, and can reveal loss of function phenotypes incompatible with life.


Sign in / Sign up

Export Citation Format

Share Document