scholarly journals Glycosyltransferase POMGNT1 deficiency affects N-cadherin-mediated cell-cell adhesion

2020 ◽  
Author(s):  
Sina Ibne Noor ◽  
Marcus Hoffmann ◽  
Natalie Rinis ◽  
Markus F. Bartels ◽  
Patrick Winterhalter ◽  
...  

AbstractDefects in protein O-mannosylation lead to severe congenital muscular dystrophies known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which leads to a reduction in cell adhesion to the extracellular matrix. Mutations in protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, are mainly associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, direct molecular mechanisms are largely unknown. We used POMGNT1 knock-out HEK293T cells and fibroblasts from a MEB patient to gain a deeper insight into the molecular changes in POMGNT1 deficiency. A combination of biochemical and molecular biological techniques with proteomics, glycoproteomics and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. We found that in POMGNT1 deficient cells ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable to the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general, and suggests a previously underestimated impact of changes in O-mannosylation on N-glycosylation.

2021 ◽  
Vol 43 (2) ◽  
pp. 900-916
Author(s):  
Anna Zubrzycka ◽  
Monika Migdalska-Sęk ◽  
Sławomir Jędrzejczyk ◽  
Ewa Brzeziańska-Lasota

Endometriosis is a chronic gynecological disease defined by the presence of endometrial-like tissue found outside the uterus, most commonly in the peritoneal cavity. Endometriosis lesions are heterogenous but usually contain endometrial stromal cells and epithelial glands, immune cell infiltrates and are vascularized and innervated by nerves. The complex etiopathogenesis and heterogenity of the clinical symptoms, as well as the lack of a specific non-invasive diagnostic biomarkers, underline the need for more advanced diagnostic tools. Unfortunately, the contribution of environmental, hormonal and immunological factors in the disease etiology is insufficient, and the contribution of genetic/epigenetic factors is still fragmentary. Therefore, there is a need for more focused study on the molecular mechanisms of endometriosis and non-invasive diagnostic monitoring systems. MicroRNAs (miRNAs) demonstrate high stability and tissue specificity and play a significant role in modulating a range of molecular pathways, and hence may be suitable diagnostic biomarkers for the origin and development of endometriosis. Of these, the most frequently studied are those related to endometriosis, including those involved in epithelial–mesenchymal transition (EMT), whose expression is altered in plasma or endometriotic lesion biopsies; however, the results are ambiguous. Specific miRNAs expressed in endometriosis may serve as diagnostics markers with prognostic value, and they have been proposed as molecular targets for treatment. The aim of this review is to present selected miRNAs associated with EMT known to have experimentally confirmed significance, and discuss their utility as biomarkers in endometriosis.


Author(s):  
Frédéric H. Login ◽  
Johan Palmfeldt ◽  
Joleen Cheah ◽  
Soichiro Yamada ◽  
Lene N. Nejsum

Aquaporins (AQPs) are water channels that facilitate transport of water across cellular membranes. AQPs are overexpressed in several cancers. Especially in breast cancer, AQP5 overexpression correlates with spread to lymph nodes and poor prognosis. Previously, we showed that AQP5 expression reduced cell-cell adhesion by reducing levels of adherens and tight junction proteins (e.g., ZO1, plakoglobin and β-catenin) at the actual junctions. Here, we show that when targeted to the plasma membrane, the AQP5 C-terminal tail domain regulated junctional proteins. Moreover, that AQP5 interacted with ZO1, plakoglobin, β-catenin and desmoglein-2, which were all reduced at junctions upon AQP5 overexpression. Thus, our data suggest that AQP5 mediates the effect on cell-cell adhesion via interactions with junctional protein independently of AQP5 mediated water transport. AQP5 overexpression in cancers may thus contribute to carcinogenesis and cancer spread by two independent mechanisms: reduced cell-cell adhesion, a characteristic of epithelial-mesenchymal transition, and increased cell migration capacity via water transport.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10136
Author(s):  
Hui Zou ◽  
Chenli Shan ◽  
Linlin Ma ◽  
Jia Liu ◽  
Ning Yang ◽  
...  

Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain the polarity of RPE cells, and are required for cellular functions. In proliferative vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo epithelial-mesenchymal transition (EMT), and ultimately transform into myofibroblasts, leading to the formation of fibrocellular membranes on both surfaces of the detached retina and on the posterior hyaloids, which causes tractional retinal detachment. In PVR, RPE cells are crucial contributors, and multiple signaling pathways, including the SMAD-dependent pathway, Rho pathway, MAPK pathways, Jagged/Notch pathway, and the Wnt/β-catenin pathway are activated. These pathways mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This review summarizes the current body of knowledge on the polarized phenotype of RPE, the role of cell-cell contact, and the molecular mechanisms underlying the RPE EMT in PVR, emphasizing key insights into potential approaches to prevent PVR.


2018 ◽  
Vol 17 (4) ◽  
pp. 24-29
Author(s):  
I. Y. Zhitnyak ◽  
N. I. Litovka ◽  
S. N. Rubtsova ◽  
N. A. Gloushankova

Using DIC and confocal microscopy, changes in morphology, migratory characteristics and adherence junctions (AJs) were analyzed in the mammary carcinoma cell line MCF-7-SNAI1  after activation of the EMT transcription factor SNAI1. Western Blot analysis showed that  after removal of tetracycline from the cell culture medium expression of SNAI1 reached its  peak in 24 hours and then plateaued for 7 days. During the 7 days the cells continued to  express E-cadherin; however, tangential AJs typical for cells with stable cell-cell adhesion,  changed into radial AJs. The radial AJs continued to accumulate E-cadherin during 24‑72  hours after tetracycline removal. As a result of SNAI1 activation, the cells underwent  epithelial-mesenchymal transition (EMT) and became migratory. On a two-dimensional  substrate, cells exhibited both individual and collective migration. As the tetracycline  washout period progressed, the fraction of the cells capable of migrating through migration chamber membranes increased; on the contrary, cells’ ability to invade an epithelial  monolayer decreased. These results demonstrate that retaining a hybrid epithelial/mesenchymal  phenotype and accumulation of E-cadherin in AJs during early stages of EMT do not impede  disruption of stable cell-cell adhesion and cells’ acquisition of migratory activity.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 290
Author(s):  
Itaru Hashimoto ◽  
Takashi Oshima

Despite recent improvements in diagnostic ability and treatment strategies, advanced gastric cancer (GC) has a high frequency of recurrence and metastasis, with poor prognosis. To improve the treatment results of GC, the search for new treatment targets from proteins related to epithelial–mesenchymal transition (EMT) and cell–cell adhesion is currently being conducted. EMT plays an important role in cancer metastasis and is initiated by the loss of cell–cell adhesion, such as tight junctions (TJs), adherens junctions, desmosomes, and gap junctions. Among these, claudins (CLDNs) are highly expressed in some cancers, including GC. Abnormal expression of CLDN1, CLDN2, CLDN3, CLDN4, CLDN6, CLDN7, CLDN10, CLDN11, CLDN14, CLDN17, CLDN18, and CLDN23 have been reported. Among these, CLDN18 is of particular interest. In The Cancer Genome Atlas, GC was classified into four new molecular subtypes, and CLDN18–ARHGAP fusion was observed in the genomically stable type. An anti-CLDN18.2 antibody drug was recently developed as a therapeutic drug for GC, and the results of clinical trials are highly predictable. Thus, CLDNs are highly expressed in GC as TJs and are expected targets for new antibody drugs. Herein, we review the literature on CLDNs, focusing on CLDN18 in GC.


2018 ◽  
Author(s):  
Cyril Andrieu ◽  
Audrey Montigny ◽  
Dominique Alfandari ◽  
Eric Theveneau

SummaryThe transmembrane Matrix Metalloproteinase MMP14/MT1-MMP is known to promote cell migration by cleavage of the extracellular matrix. To initiate migration, epithelial cells need to gain mesenchymal attributes. They reduce cell-cell junctions and apicobasal polarity and gain migratory capabilities. This process is named epithelial-mesenchymal transition (EMT). MMP14’s implication in EMT is still ill-defined. We used chick neural crest (NC) cells as a model to explore the function of MMP14 in physiological EMT. Our results show that MMP14 is expressed by chick NC cells. However, it is its subcellular localization, rather than its expression, that correlates with EMT. MMP14 is first apical and switches to basolateral domains during EMT. Loss of function and rescue experiments show that MMP14 is involved in EMT independently of its catalytic activity. It lies downstream of pro-EMT genes and upstream of cell polarity. We found that basolateral localization of MMP14 is required and sufficient to induce polarity change in NC cells and neuroepithelial cells, respectively. These effects on polarity occur without impact on cell-cell adhesion or the extracellular matrix. Overall, our data points to a new function of MMP14 in EMT that will need to be further explored in other systems such as cancer cells.


2012 ◽  
Vol 288 (4) ◽  
pp. 2179-2189 ◽  
Author(s):  
Karin S. A. Barcellos ◽  
Carolina L. Bigarella ◽  
Mark V. Wagner ◽  
Karla P. Vieira ◽  
Mariana Lazarini ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 578 ◽  
Author(s):  
Irina Y. Zhitnyak ◽  
Svetlana N. Rubtsova ◽  
Nikita I. Litovka ◽  
Natalya A. Gloushankova

Epithelial-mesenchymal transition (EMT) plays an important role in development and also in initiation of metastasis during cancer. Disruption of cell-cell contacts during EMT allowing cells to detach from and migrate away from their neighbors remains poorly understood. Using immunofluorescent staining and live-cell imaging, we analyzed early events during EMT induced by epidermal growth factor (EGF) in IAR-20 normal epithelial cells. Control cells demonstrated stable adherens junctions (AJs) and robust contact paralysis, whereas addition of EGF caused rapid dynamic changes at the cell-cell boundaries: fragmentation of the circumferential actin bundle, assembly of actin network in lamellipodia, and retrograde flow. Simultaneously, an actin-binding protein EPLIN was phosphorylated, which may have decreased the stability of the circumferential actin bundle. Addition of EGF caused gradual replacement of linear E-cadherin–based AJs with dynamic and unstable punctate AJs, which, unlike linear AJs, colocalized with the mechanosensitive protein zyxin, confirming generation of centripetal force at the sites of cell-cell contacts during EMT. Our data show that early EMT promotes heightened dynamics at the cell-cell boundaries—replacement of stable AJs and actin structures with dynamic ones—which results in overall weakening of cell-cell adhesion, thus priming the cells for front-rear polarization and eventual migration.


Sign in / Sign up

Export Citation Format

Share Document