scholarly journals Gut Dysbiosis with a Pathobiont Shifts the Intestinal Microbiota Profile and Accelerates Lupus Nephritis

2020 ◽  
Author(s):  
Giancarlo R. Valiente ◽  
Armin Munir ◽  
Marcia L. Hart ◽  
Perry Blough ◽  
Takuma T. Wada ◽  
...  

ABSTRACTThe gut microbiota (GM) exerts a strong influence over the host immune system and dysbiosis of this microbial community can affect the clinical phenotype in chronic inflammatory conditions. To explore the role of the GM in lupus nephritis, we colonized NZM2410 mice with Segmented Filamentous Bacteria (SFB). Gut colonization with SFB was associated with worsening glomerulonephritis, glomerular and tubular immune complex deposition and interstitial inflammation compared to NZM2410 mice free of SFB. With SFB colonization mice experienced an increase in small intestinal lamina propria Th17 cells and group 3 innate lymphoid cells (ILC3s). However, although serum IL-17A expression was elevated in these mice, Th17 cells and ILC3s were not detected in the inflammatory infiltrate in the kidney. In contrast, serum and kidney tissue expression of the macrophage chemoattractants MCP-1 and CXCL1 were significantly elevated in SFB colonized mice. Furthermore, kidney infiltrating F4/80+CD206+ M2-like macrophages were significantly increased in these mice. Evidence of increased gut permeability or “leakiness” was detected in SFB colonized mice. Finally, the intestinal microbiome of SFB colonized mice at 15 and 30 weeks of age exhibited dysbiosis when compared to uncolonized mice at the same time points. Both microbial relative abundance as well as biodiversity of colonized mice was found to be altered. Collectively, SFB gut colonization in the NZM2410 mouse exacerbates kidney disease, promotes kidney M2-like macrophage infiltration and overall intestinal microbiota dysbiosis.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Giancarlo R. Valiente ◽  
Armin Munir ◽  
Marcia L. Hart ◽  
Perry Blough ◽  
Takuma T. Wada ◽  
...  

AbstractThe gut microbiota (GM) exerts a strong influence over the host immune system and dysbiosis of this microbial community can affect the clinical phenotype in chronic inflammatory conditions. To explore the role of the GM in lupus nephritis, we colonized NZM2410 mice with Segmented Filamentous Bacteria (SFB). Gut colonization with SFB was associated with worsening glomerulonephritis, glomerular and tubular immune complex deposition and interstitial inflammation compared to NZM2410 mice free of SFB. With SFB colonization mice experienced an increase in small intestinal lamina propria Th17 cells and group 3 innate lymphoid cells (ILC3s). However, although serum IL-17A expression was elevated in these mice, Th17 cells and ILC3s were not detected in the inflammatory infiltrate in the kidney. In contrast, serum and kidney tissue expression of the macrophage chemoattractants MCP-1 and CXCL1 were significantly elevated in SFB colonized mice. Furthermore, kidney infiltrating F4/80+CD206+M2-like macrophages were significantly increased in these mice. Evidence of increased gut permeability or “leakiness” was also detected in SFB colonized mice. Finally, the intestinal microbiome of SFB colonized mice at 15 and 30 weeks of age exhibited dysbiosis when compared to uncolonized mice at the same time points. Both microbial relative abundance as well as biodiversity of colonized mice was found to be altered. Collectively, SFB gut colonization in the NZM2410 mouse exacerbates kidney disease, promotes kidney M2-like macrophage infiltration and overall intestinal microbiota dysbiosis.


mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Jiachao Zhang ◽  
Zhihong Sun ◽  
Shuaiming Jiang ◽  
Xiaoye Bai ◽  
Chenchen Ma ◽  
...  

ABSTRACT Although a few studies have investigated the intestinal microbiota of women with polycystic ovary syndrome (PCOS), the functional and metabolic mechanisms of the microbes associated with PCOS, as well as potential microbial biomarkers, have not yet been identified. To address this gap, we designed a two-phase experiment in which we performed shotgun metagenomic sequencing and monitored the metabolic parameters, gut-brain mediators, and sex hormones of PCOS patients. In the first stage, we identified an imbalance in the intestinal microbiota of the PCOS patients, observing that Faecalibacterium, Bifidobacterium, and Blautia were significantly more abundant in the control group, whereas Parabacteroides and Clostridium were enriched in the PCOS group. In the second stage, we monitored the impact of the probiotic Bifidobacterium lactis V9 on the intestinal microbiome, gut-brain mediators, and sex hormones of 14 PCOS patients. Notably, we observed that the levels of luteinizing hormone (LH) and LH/follicle-stimulating hormone (LH/FSH) decreased significantly in 9 volunteers, whereas the levels of sex hormones and intestinal short-chain fatty acids (SCFAs) increased markedly. In contrast, the changes in the indices mentioned above were indistinct in the remaining 5 volunteers. The results of an analysis of the number of viable Bifidobacterium lactis V9 cells in the two groups were highly consistent with the clinical and SCFA results. Therefore, effective host gut colonization of the probiotic Bifidobacterium lactis V9 was crucial for its ability to function as a probiotic. Finally, we propose a potential mechanism describing how probiotics regulate the levels of sex hormones by manipulating the intestinal microbiome in PCOS patients. IMPORTANCE Polycystic ovary syndrome (PCOS) is a common metabolic disorder among women of reproductive age worldwide. Through a two-phase clinical experiment, we first revealed an imbalance in the intestinal microbiome of PCOS patients. By binning and annotating shotgun metagenomic sequences into metagenomic species (MGS), 61 MGSs were identified as potential PCOS-related microbial biomarkers. In the second stage, we monitored the impact of the probiotic Bifidobacterium lactis V9 on the intestinal microbiota, metabolic parameters, gut-brain mediators, and sex hormones of PCOS patients. Notably, we observed that the PCOS-related clinical indices and the intestinal microbiotas of the participating patients exhibited an inconsistent response to the intake of the B. lactis V9 probiotic. Therefore, effective host gut colonization of the probiotic was crucial for its ability to function as a probiotic. Finally, we propose a potential mechanism by which B. lactis V9 regulates the levels of sex hormones by manipulating the intestinal microbiome in PCOS patients.


2015 ◽  
Vol 7 (1) ◽  
pp. 5-14 ◽  
Author(s):  
S. Rautava

The significance of contact with microbes in early life for subsequent health has been the subject of intense research during the last 2 decades. Disturbances in the establishment of the indigenous intestinal microbiome caused by cesarean section delivery or antibiotic exposure in early life have been linked to the risk of immune-mediated and inflammatory conditions such as atopic disorders, inflammatory bowel disease and obesity later in life. Distinct microbial populations have recently been discovered at maternal sites including the amniotic cavity and breast milk, as well as meconium, which have previously been thought to be sterile. Our understanding of the impact of fetal microbial contact on health outcomes is still rudimentary. Breast milk is known to modulate immune and metabolic programming. The breast milk microbiome is hypothesized to guide infant gut colonization and is affected by maternal health status and mode of delivery. Immunomodulatory factors in breast milk interact with the maternal and infant gut microbiome and may mediate some of the health benefits associated with breastfeeding. The intimate connection between the mother and the fetus or the infant is a potential target for microbial therapeutic interventions aiming to support healthy microbial contact and protect against disease.


2021 ◽  
Author(s):  
Ranit Kedmi ◽  
Tariq Najar ◽  
Kailin R. Mesa ◽  
Allyssa Grayson ◽  
Lina Kroehling ◽  
...  

The mutualistic relationship of gut-resident microbiota and cells of the host immune system promotes homeostasis that ensures maintenance of the microbial community and of a poised, but largely non-aggressive, immune cell compartment1,2. Consequences of disturbing this balance, by environmental or genetic factors, include proximal inflammatory conditions, like Crohn's disease, and systemic illnesses, both metabolic and autoimmune. One of the means by which this equilibrium is achieved is through induction of both effector and suppressor or regulatory arms of the adaptive immune system. In mice, Helicobacter species induce regulatory (iTreg) and follicular helper (Tfh) T cells in the colon-draining mesenteric lymph nodes under homeostatic conditions, but can instead induce inflammatory Th17 cells and colitis when iTreg cells are compromised3,4. How Helicobacter hepaticus and other gut bacteria direct T cells to adopt distinct functions remains poorly understood. Here, we investigated which cells and molecular components are required to convey the microbial instruction for the iTreg differentiation program. We found that antigen presentation by cells expressing RORγt, rather than by classical dendritic cells, was both required and sufficient for iTreg induction. These RORγt+ cells, likely to be type 3 innate lymphoid cells (ILC3), require the MHC class II antigen presentation machinery, the chemokine receptor CCR7, and αv integrin, which activates TGF-β, for iTreg cell differentiation. In the absence of any of these, instead of iTreg cells there was expansion of microbiota-specific pathogenic Th17 cells, which were induced by other antigen presenting cells (APCs) that did not require CCR7. Thus, intestinal commensal microbes and their products target multiple APCs with pre-determined features suited to directing appropriate T cell differentiation programs, rather than a common APC that they endow with appropriate functions. Our results illustrate the ability of microbiota to exploit specialized functions of distinct innate immune system cells, targeting them to achieve the desired composition of equipoised T cells, thus maintaining tolerance.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Haider S Al-Hadad ◽  
Aqeel Abbas Matrood ◽  
Maha Abdalrasool Almukhtar ◽  
Haider Jabur Kehiosh ◽  
Riyadh Muhi Al-Saegh

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease. Few biomarkers for SLE have been validated and widely accepted for the laboratory follow-up of inflammatory activity. In SLE patients, with lupus nephritis (LN), complement activation leads to fluctuation of serum C3 and C4 that are frequently used as clinicalm biomarker of disease activity in SLE. Patients and Methods: In this study the number of patients were 37, seven patients were excluded for incomplete data collection, 28 were females ,2 were males. The duration of the study is two years from 2015 to 2017. Patients were considered to have SLE and LN according to American College of Rheumatology (ACR) criteria, and International Society of Nephrology/ Renal Pathology Society (ISN/RPS). All patients were evaluated withm clinical presentation, laboratory investigations. Our patients underwent kidney biopsy according to standard procedure by Kerstin Amann, and their tissue specimens were studied in the laboratory with light microscope (LM) and immunofluorescence microscope reagents. The relationship between the serological markers and immunofluorescence deposits in kidney biopsy of all patients were studied using the statistical analysis of Pearson correlation and single table student's T test. A P value 0.05 was considered statistically significant. Results: The granular pattern of IF deposits was present in all LN patients, and in more than two third of patients these IF deposits presented in glomerular, tubular, and mesangium sites. While less than one third of patients had IF deposits in the mesangium only. There was no statistically significant correlation between serum ANA, anti-dsDNA, and IF deposits of different types. There was significant correlation between serum C3 and C4 hypocomplementemia and IgG immune deposits in kidney biopsy, and there was significant relationship between serum C3 hypocomplementemia and full house immunofluorescence (FHIF) deposits inm kidney biopsy.Conclusions:Immunofluorescence deposits is mainly granular pattern in LN patients. There was no significant association between serum ANA, anti-dsDNA, and immune deposits in kidney tissue. Immunofluorescence deposits of IgG type correlates significantly with serum C3 and C4 hypocomplemetemia, and these immune deposits in association with low complement levels correlates with LN flare. There was significant correlation between C3 hypocomplementemia and FHIF.


2020 ◽  
Vol 23 (7) ◽  
pp. 649-657
Author(s):  
Dong-Jiang Liao ◽  
Xi-Ping Cheng ◽  
Nan Li ◽  
Kang-Li Liang ◽  
Hui Fan ◽  
...  

Aim and Objective: Lupus nephritis (LN) is one of the major complications of systemic lupus erythematosus (SLE). The specific mechanisms of pathogenesis, aggravation, and remission processes in LN have not been clarified but is of great need in the clinic. Using isobaric tags for relative and absolute quantitation (iTRAQ) technology to screen the functional proteins of LN in mice. Especially under intervention factors of lipopolysaccharide (LPS) and dexamethasone. Methods: Mrl-lps mice were intervened with LPS, dexamethasone, and normal saline (NS) using intraperitoneal injection, and c57 mice intervened with NS as control. The anti-ANA antibody enzyme-linked immunosorbent assay (ELISA) was used to verify disease severity. Kidney tissue is collected and processed for iTRAQ to screen out functional proteins closely related to the onset and development of LN. Western blot method and rt-PCR (real-time Polymerase Chain Reaction) were used for verification. Results: We identified 136 proteins that marked quantitative information. Among them, Hp, Igkv8-27, Itgb2, Got2, and Pcx proteins showed significant abnormal manifestations. Conclusion: Using iTRAQ methods, the functional proteins Hp, Igkv8-27, Itgb2, Got2, and Pcx were screened out for a close relationship with the pathogenesis and development of LN, which is worth further study.


2019 ◽  
Vol 20 (21) ◽  
pp. 5493 ◽  
Author(s):  
Meunier ◽  
Chea ◽  
Garrido ◽  
Perchet ◽  
Petit ◽  
...  

Innate lymphoid cells (ILC) are important players of early immune defenses in situations like lymphoid organogenesis or in case of immune response to inflammation, infection and cancer. Th1 and Th2 antagonism is crucial for the regulation of immune responses, however mechanisms are still unclear for ILC functions. ILC2 and NK cells were reported to be both involved in allergic airway diseases and were shown to be able to interplay in the regulation of the immune response. CXCR6 is a common chemokine receptor expressed by all ILC, and its deficiency affects ILC2 and ILC1/NK cell numbers and functions in lungs in both steady-state and inflammatory conditions. We determined that the absence of a specific ILC2 KLRG1+ST2– subset in CXCR6-deficient mice is probably dependent on CXCR6 for its recruitment to the lung under inflammation. We show that despite their decreased numbers, lung CXCR6-deficient ILC2 are even more activated cells producing large amount of type 2 cytokines that could drive eosinophilia. This is strongly associated to the decrease of the lung Th1 response in CXCR6-deficient mice.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannes Petruschke ◽  
Christian Schori ◽  
Sebastian Canzler ◽  
Sarah Riesbeck ◽  
Anja Poehlein ◽  
...  

Abstract Background The intestinal microbiota plays a crucial role in protecting the host from pathogenic microbes, modulating immunity and regulating metabolic processes. We studied the simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species with a particular focus on the discovery of novel small proteins with less than 100 amino acids (= sProteins), some of which may contribute to shape the simplified human intestinal microbiota. Although sProteins carry out a wide range of important functions, they are still often missed in genome annotations, and little is known about their structure and function in individual microbes and especially in microbial communities. Results We created a multi-species integrated proteogenomics search database (iPtgxDB) to enable a comprehensive identification of novel sProteins. Six of the eight SIHUMIx species, for which no complete genomes were available, were sequenced and de novo assembled. Several proteomics approaches including two earlier optimized sProtein enrichment strategies were applied to specifically increase the chances for novel sProtein discovery. The search of tandem mass spectrometry (MS/MS) data against the multi-species iPtgxDB enabled the identification of 31 novel sProteins, of which the expression of 30 was supported by metatranscriptomics data. Using synthetic peptides, we were able to validate the expression of 25 novel sProteins. The comparison of sProtein expression in each single strain versus a multi-species community cultivation showed that six of these sProteins were only identified in the SIHUMIx community indicating a potentially important role of sProteins in the organization of microbial communities. Two of these novel sProteins have a potential antimicrobial function. Metabolic modelling revealed that a third sProtein is located in a genomic region encoding several enzymes relevant for the community metabolism within SIHUMIx. Conclusions We outline an integrated experimental and bioinformatics workflow for the discovery of novel sProteins in a simplified intestinal model system that can be generically applied to other microbial communities. The further analysis of novel sProteins uniquely expressed in the SIHUMIx multi-species community is expected to enable new insights into the role of sProteins on the functionality of bacterial communities such as those of the human intestinal tract.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


Author(s):  
Phillipp Hartmann ◽  
Bernd Schnabl

AbstractAlcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are important causes of morbidity and mortality worldwide. The intestinal microbiota is involved in the development and progression of both ALD and NAFLD. Here we describe associated changes in the intestinal microbiota, and we detail randomized clinical trials in ALD and NAFLD which evaluate treatments modulating the intestinal microbiome including fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and antibiotics. Finally, we discuss precision medicine approaches targeting the intestinal microbiome to ameliorate ALD and NAFLD.


Sign in / Sign up

Export Citation Format

Share Document