scholarly journals Evaluation of the antiviral effect of chlorine dioxide (ClO2) using a vertebrate model inoculated with avian coronavirus

2020 ◽  
Author(s):  
Xóchitl Zambrano-Estrada ◽  
Carlos Domínguez-Sánchez ◽  
Marina Banuet-Martínez ◽  
Fabiola Guerrero de la Rosa ◽  
Teresa García-Gasca ◽  
...  

AbstractBackgroundThe need for safe and effective antiviral treatments is pressing given the number of viral infections that are prevalent in animal and human populations, often causing devastating economic losses and mortality. Informal accounts of anecdotal use of chlorine dioxide (ClO2), a well-known disinfectant and antiseptic, in COVID-19 patients has raised concern about potential toxicity, but also raises the question that ClO2 might elicit antiviral effects, a possibility that has never been examined in vivo in any animal model. Here, we challenged the hypothesis that ClO2 decreases the viral load and virus-induced mortality in a vertebrate model. For this, we determined viral load, virus-induced lesions and mortality in 10-day old chick embryos inoculated with 104 mean EID50/mL of attenuated Massachusetts and Connecticut avian coronavirus (IBV) strains.ResultsThe ClO2 treatment had a marked impact on IBV infection. Namely, viral titres were 2.4-fold lower and mortality was reduced by half in infected embryos that were treated with ClO2. Infection led to developmental abnormalities regardless of treatment. Lesions typical of IBV infections were observed in all inoculated embryos, but severity tended to be significantly lower in ClO2-treated embryos. We found no gross or microscopic evidence of toxicity caused by ClO2 at the doses used herein.ConclusionsOur study shows that ClO2 could be a safe and viable way of treating and mitigating the effects of avian coronavirus infections, and raises the possibility that similar effects could be observed in other organisms.Graphical abstract

2021 ◽  
Author(s):  
Jing Chen ◽  
Shijie Zhao ◽  
Zhiying Cui ◽  
Wen Li ◽  
Pengli Xu ◽  
...  

Porcine reproductive and respiratory syndrome virus is a major economically significant pathogen and has evolved several strategies to evade host's antiviral response and provide favorable conditions for survival. In the present study, we demonstrated that a host microRNA, miR-376b-3p, was upregulated by PRRSV infection through the viral components, nsp4 and nsp11, and miR-376b-3p can directly target tripartite motif-containing 22 (TRIM22) to impair its anti-PRRSV activity, thus facilitating the replication of PRRSV. Meanwhile, we found that TRIM22 induced degradation of the nucleocapsid protein (N) of PRRSV by interacting with N protein to inhibit PRRSV replication, and further study indicated that TRIM22 could enhance the activation of lysosomal pathway by interacting with LC3 to induce lysosomal degradation of N protein. In conclusion, PRRSV increased miR-376b-3p expression and hijacked the host miR-376b-3p to promote PRRSV replication by impairing the antiviral effect of TRIM22. Therefore, our finding outlines a novel strategy of immune evasion exerted by PRRSV, which is helpful for better understanding the pathogenesis of PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes enormous economic losses each year in the swine industry worldwide. MicroRNAs (miRNAs) play important roles during viral infections via modulating the expression of viral or host genes at post-transcriptional level. TRIM22 has recently been identified as a key restriction factor that inhibited the replication of a number of human virus such as HIV, ECMV, HCV, HBV, IAV, and RSV. Here we showed that host miR-376b-3p could be up-regulated by PRRSV and functioned to impair the anti-PRRSV role of TRIM22 to facilitate PRRSV replication. Meanwhile, we found that TRIM22 inhibited the replication of PRRSV by interacting with viral N protein and accelerating its degradation through the lysosomal pathway. Collectively, the paper described a novel mechanism that PRRSV exploited the host miR-376b-3p to evade antiviral responses and provided a new insight into the study of virus-host interactions.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 600 ◽  
Author(s):  
Constanza Cárdenas ◽  
Fanny Guzmán ◽  
Marisela Carmona ◽  
Cristian Muñoz ◽  
Luis Nilo ◽  
...  

Viral infections in salmonids represent an ongoing challenge for the aquaculture industry. Two RNA viruses, the infectious pancreatic necrosis virus (IPNV) and the infectious salmon anemia virus (ISAV), have become a latent risk without healing therapies available for either. In this context, antiviral peptides emerge as effective and relatively safe therapeutic molecules. Based on in silico analysis of VP2 protein from IPNV and the RNA-dependent RNA polymerase from ISAV, a set of peptides was designed and were chemically synthesized to block selected key events in their corresponding infectivity processes. The peptides were tested in fish cell lines in vitro, and four were selected for decreasing the viral load: peptide GIM182 for IPNV, and peptides GIM535, GIM538 and GIM539 for ISAV. In vivo tests with the IPNV GIM 182 peptide were carried out using Salmo salar fish, showing a significant decrease of viral load, and proving the safety of the peptide for fish. The results indicate that the use of peptides as antiviral agents in disease control might be a viable alternative to explore in aquaculture.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1906-1906
Author(s):  
Liliane Dal Cortivo ◽  
RITA Creidy ◽  
Aurélie Gabrion ◽  
Marianne Leruez-Ville ◽  
Sebastien Heritier ◽  
...  

Abstract Abstract 1906 Reactivation of latent viruses such as cytomegalovirus (CMV) and adenovirus (AdV) is responsible for infections which may be life-threatening in HSCT recipients. In the post-transplantation period, severity and frequency of these infections depend on (a) the degree of donor-recipient HLA incompatibility and (b) the intensity of immunosuppressive therapy used to prevent immunological complications. Antiviral drugs may be partially effective, often toxic and cannot always control those viral infections.T cell immunity plays a major role in the control of viral infections. It has been demonstrated that the transfer of donor T lymphocytes specifically directed against viral antigens is capable of preventing, controlling and clearing viral infection (Feuchtinger T et al., 2004 and 2010). The present project aimed the evaluation of specific, cell-based immunity against CMV and AdV by injection of IFN-g-positive CD4+and CD8+ donor T lymphocytes isolated ex vivo after stimulation with viral peptides. Methods: Our protocol was designed for pediatric or adult patients treated by allogeneic HSCT and matching the following inclusion criteria: (1) biological and/or clinical symptoms of CMV and/or AdV infection 2) no response or contraindication to conventional antiviral treatment and (3) no or low grade pre-existing aGvHD at inclusion (≤ grade II) controlled by corticoids (<1 mg/kg). Antiviral treatments are allowed during the inclusion period. Donor IFN-g-positive T lymphocytes are isolated with the CliniMACS Cytokine Capture System (Miltenyi Biotech) after incubation with viral peptide pools. Primary evaluation criterion is the efficacy of the treatment on CMV viral load 21 days after the first injection. In the event of a negative or partial response and the absence of aGvHD, a second injection may be scheduled. Secondary evaluation criteria are (1) the occurrence of de novo aGvHD or aggravation of existing aGvHD, (2) the evolution of clinical symptoms potentially related to the infection, (3) the demonstration of biological in vivo expansion of injected T lymphocytes (as evidenced by the IFN-g secretion capacity and specific tetramer assays) and (4) for AdV infection, evaluation of efficacy (viral load, in vivo expansion of transfused lymphocytes, clinical symptoms) and the safety (occurrence of aGvHD) of this immunotherapy. Results: From September 2010 to July 2012, 9 patients were included: 3 male adults (46–54 years, 1 CLL, 1 CML and 1 AA, 2 geno- and 1 pheno-identical transplantation) and 6 children (age: 7–25 months, sex ratio F/M: 4/2, 4 FLH, 1 SCID and 1AA, 4 haplo, 1 geno- and 1 pheno-id transplantation). 4/9 patients were treated for CMV, 3/9 for AdV and 2/9 for CMV and AdV reactivation. 5/9 patients received 2 cytotoxic T lymphocytes (CTL) injections. Mean number of CD3 IFN-g positive cells injected was 4206/kg (1167–6000/kg) with 55% and 69% of CD4 and CD8 anti CMV-T cells and 56% and 61% of CD4 and CD8 anti AdV T cells respectively. Mean delay of first immunotherapy was 109 days (28–270) after transplantation. 2/9 patients were not evaluable due to early death (<21 days post injection) and 1/9 patient died of graft failure 43 days after CTL injection without efficacy on infectious evolution. 6 patients are still alive: 4 with complete, 1 with partial remission of virus replication and 1 recently included, is still under evaluation. An in vivo expansion of transfused CTL was observed (mean expansion was 33 and 35 fold for CD8-IFN-g and CD4-IFN-g positive cells respectively 42 days after injection) in parallel with the decrease of viral load in all alive patients. No aGvHD was detected in the 5/6 evaluated patients. One of 6 presenting cGvH at inclusion need increase of corticotherapy 3 months after second injection of CTL One patient presenting with CMV retinitis received 2 CTL injections without worsening of retina lesions which healed. Conclusion: The CliniMACS Cytokine Capture System allows the isolation of virus-specific T cells in a brief delay (24 hours) with a satisfactory enrichment of both CD4 and CD8 T cells. First results show efficacy of virus-specific T cells injection on viral load without signs of aGvHD in 5/6 evaluable patients. More patients need to be included in this trial in order to confirm these encouraging results. Disclosures: Cambouris: Miltenyi Biotec: Employment.


2020 ◽  
Vol 117 (30) ◽  
pp. 18002-18009 ◽  
Author(s):  
Pengfei Wang ◽  
Mili R. Gajjar ◽  
Jian Yu ◽  
Neal N. Padte ◽  
Agegnehu Gettie ◽  
...  

In combating viral infections, the Fab portion of an antibody could mediate virus neutralization, whereas Fc engagement of Fc-γ receptors (FcγRs) could mediate an array of effector functions. Evidence abounds that effector functions are important in controlling infections by influenza, Ebola, or HIV-1 in animal models. However, the relative contribution of virus neutralization versus effector functions to the overall antiviral activity of an antibody remains unknown. To address this fundamental question in immunology, we utilized our knowledge of HIV-1 dynamics to compare the kinetics of the viral load decline (ΔVL) in infected animals given a wild-type (WT) anti–HIV-1 immunoglobulin G1 (IgG1) versus those given a Fc-Null variant of the same antibody. In three independent experiments in HIV-1–infected humanized mice and one pivotal experiment in simian–human immunodeficiency virus (SHIV)-infected rhesus macaques, an earlier and sharper decline in viral load was consistently detected for the WT antibody. Quantifications of the observed differences indicate that Fc-mediated effector functions accounted for 25–45% of the total antiviral activity in these separate experiments. In this study, Fc-mediated effector functions have been quantified in vivo relative to the contribution of virus neutralization mediated by the Fab.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S924-S924
Author(s):  
Jasper Fuk-Woo Chan ◽  
Jessica Tsang ◽  
Jie Zhou ◽  
Xiaoyu Zhao ◽  
Kwok-Yung Yuen

Abstract Background Enteroviruses are non-enveloped, single-stranded positive-sense RNA viruses belonging to the family Picornaviridae. Enterovirus A71 (EV-A71) has caused recurrent outbreaks of hand, foot, and mouth disease especially among children in Asia. Some patients develop severe complications, such as meningitis, encephalitis, myocarditis, and pulmonary edema. A major hurdle for the development of antivirals for EV-A71 infection is the lack of robust antiviral platforms that closely mimic the in vivo setting. Organoids are laboratory-adapted miniaturized organs with preserved three-dimensional micro-anatomical architecture. In recent years, organoid cultures have been increasingly used for studying the pathogenesis of and evaluating antiviral treatment options for viral infections. In this study, we developed human intestinal organoids as a robust platform for evaluating antiviral options for EV-A71. Methods An epidemic strain of EV-A71 isolated from a patient with laboratory-confirmed EV-A71 infection was used. We compared the performance of multiple antiviral evaluation assays (virus yield reduction, plaque reduction, and cell protection assays) between human intestinal organoids and Caco-2 cells, using itraconazole (an antifungal previously shown to exhibit potent anti-enteroviral effects) and DMSO as positive and negative controls, respectively. Results The antiviral effect of itraconazole was comparable between human intestinal organoids and Caco-2 cells in the virus yield reduction and plaque reduction assays. In the cell protection assay, Caco-2 cells failed to demonstrate significant differences between the itraconazole-treated and DMSO-treated groups. In contrast, cell protection effects were easily observed and quantified in human intestinal organoids. Moreover, the human intestinal organoids allowed the characterization of the different cell types affected in EV-A71 infection with or without itraconazole treatment. Conclusion Human intestinal organoids support the replication of EV-A71 and provides a robust platform for antiviral evaluation for EV-A71 infection. Disclosures All authors: No reported disclosures.


2008 ◽  
Vol 53 (3) ◽  
pp. 926-934 ◽  
Author(s):  
Steven S. Carroll ◽  
Steven Ludmerer ◽  
Larry Handt ◽  
Kenneth Koeplinger ◽  
Nanyan Rena Zhang ◽  
...  

ABSTRACT Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide and is associated with an increased incidence of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Currently approved therapies to treat HCV infection consist of combinations of pegylated alpha interferon and ribavirin which result in a sustained viral response in 40 to 60% of patients. Efforts to develop improved therapies include the development of direct inhibitors of virally encoded enzymes such as the viral RNA-dependent RNA polymerase. A nucleoside analog, 2′-C-methyl-7-deaza-adenosine (MK-0608), has been shown to inhibit viral RNA replication in the subgenomic HCV genotype 1b replicon, with a 50% effective concentration (EC50) of 0.3 μM (EC90 = 1.3 μM). To determine efficacy in vivo, MK-0608 was administered to HCV-infected chimpanzees, resulting in dose- and time-dependent decreases in plasma viral loads. In separate experiments, chimpanzees dosed for 7 days with MK-0608 at 0.2 and 2 mg per kg of body weight per day by intravenous administration experienced average reductions in viral load of 1.0 and >5 log10 IU/ml, respectively. Two other HCV-infected chimpanzees received daily doses of 1 mg MK-0608 per kg via oral administration. After 37 days of oral dosing, one chimpanzee with a high starting viral load experienced a reduction in viral load of 4.6 log10, and the viral load in the other chimpanzee fell below the limit of quantification (LOQ) of the HCV TaqMan assay (20 IU/ml). Importantly, viral load remained below the LOQ throughout the duration of dosing and for at least 12 days after dosing ended. The results demonstrate a robust antiviral effect on the administration of MK-0608 to HCV-infected chimpanzees.


2018 ◽  
Author(s):  
Smita Gopinath ◽  
Myoungjoo V. Kim ◽  
Tasfia Rakib ◽  
Patrick W. Wong ◽  
Michael van Zandt ◽  
...  

AbstractAntibiotics are widely used to treat infections in humans. However, the impact of antibiotic use on host cells is understudied. We have identified a novel antiviral effect of commonly used aminoglycoside antibiotics. We show that mucosal application of aminoglycosides increased host resistance to a broad range of viral infections including herpes simplex viruses, influenza A virus and Zika virus. Aminoglycoside treatment also reduced viral replication in primary human cells. This antiviral activity was independent of the microbiota as aminoglycoside treatment protected germ-free mice. Microarray analysis uncovered a marked upregulation of transcripts for interferon-stimulated genes (ISGs) following aminoglycoside application. ISG induction was mediated by TLR3, and required TIR-domain-containing adapter-inducing interferon-β (TRIF), signaling adaptor, and interferon regulatory factors 3 (IRF3) and IRF7, transcription factors that promote ISG expression. XCR1+ dendritic cells, which uniquely express TLR3, were recruited to the vaginal mucosa upon aminoglycoside treatment and were required for ISG induction. These results highlight an unexpected ability of aminoglycoside antibiotics to confer broad antiviral resistancein vivo.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Armando Arias ◽  
Lucy Thorne ◽  
Ian Goodfellow

Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.


2018 ◽  
Author(s):  
Yolande Grobler ◽  
Chi Y. Yun ◽  
David J. Kahler ◽  
Casey M. Bergman ◽  
Hangnoh Lee ◽  
...  

AbstractWolbachia is an intracellular bacterium that infects a remarkable range of insect hosts. Insects such as mosquitos act as vectors for many devastating human viruses such as Dengue, West Nile, and Zika. Remarkably, Wolbachia infection provides insect hosts with resistance to many arboviruses thereby rendering the insects ineffective as vectors. To utilize Wolbachia effectively as a tool against vector-borne viruses a better understanding of the host-Wolbachia relationship is needed. To investigate Wolbachia-insect interactions we used the Wolbachia/Drosophila model that provides a genetically tractable system for studying host-pathogen interactions. We coupled genome-wide RNAi screening with a novel high-throughput fluorescence in situ hybridization (FISH) assay to detect changes in Wolbachia levels in a Wolbachia-infected Drosophila cell line JW18. 1117 genes altered Wolbachia levels when knocked down by RNAi of which 329 genes increased and 788 genes decreased the level of Wolbachia. Validation of hits included in depth secondary screening using in vitro RNAi, Drosophila mutants, and Wolbachia-detection by DNA qPCR. A diverse set of host gene networks was identified to regulate Wolbachia levels and unexpectedly revealed that perturbations of host translation components such as the ribosome and translation initiation factors results in increased Wolbachia levels both in vitro using RNAi and in vivo using mutants and a chemical-based translation inhibition assay. This work provides evidence for Wolbachia-host translation interaction and strengthens our general understanding of the Wolbachia-host intracellular relationship.Author summaryInsects such as mosquitos act as vectors to spread devastating human diseases such as Dengue, West Nile, and Zika. It is critical to develop control strategies to prevent the transmission of these diseases to human populations. A novel strategy takes advantage of an endosymbiotic bacterium Wolbachia pipientis. The presence of this bacterium in insect vectors prevents successful transmission of RNA viruses. The degree to which viruses are blocked by Wolbachia is dependent on the levels of the bacteria present in the host such that higher Wolbachia levels induce a stronger antiviral effect. In order to use Wolbachia as a tool against vector-borne virus transmission a better understanding of host influences on Wolbachia levels is needed. Here we performed a genome-wide RNAi screen in a model host system Drosophila melanogaster infected with Wolbachia to identify host systems that affect Wolbachia levels. We found that host translation can influence Wolbachia levels in the host.


Sign in / Sign up

Export Citation Format

Share Document