scholarly journals Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype

2020 ◽  
Author(s):  
Rajan Guha ◽  
Anna Mathioudaki ◽  
Safiatou Doumbo ◽  
Didier Doumtabe ◽  
Jeff Skinner ◽  
...  

AbstractIn malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of monocytes collected from uninfected, asymptomatic Malian individuals before the malaria season revealed an inverse relationship between age and Pf-iRBC-inducible inflammatory cytokine (IL-1β, IL-6 and TNF) production, whereas Malian infants and malaria-naïve U.S. adults produced similarly high levels of inflammatory cytokines. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. These findings also suggest that past malaria exposure could mitigate monocyte-associated immunopathology induced by other pathogens such as SARS-CoV-2.Author SummaryThe malaria parasite is mosquito-transmitted and causes fever and other inflammatory symptoms while circulating in the bloodstream. However, in regions of high malaria transmission the parasite is less likely to cause fever as children age and enter adulthood, even though adults commonly have malaria parasites in their blood. Monocytes are cells of the innate immune system that secrete molecules that cause fever and inflammation when encountering microorganisms like malaria. Although inflammation is critical to initiating normal immune responses, too much inflammation can harm infected individuals. In Mali, we conducted a study of a malaria-exposed population from infants to adults and found that participants’ monocytes produced less inflammation as age increases, whereas monocytes of Malian infants and U.S. adults, who had never been exposed to malaria, both produced high levels of inflammatory molecules. Accordingly, monocytes exposed to malaria in the laboratory became less inflammatory when re-exposed to malaria again later, and these monocytes ‘turned down’ their inflammatory genes. This study helps us understand how people become immune to inflammatory symptoms of malaria and may also help explain why people in malaria-endemic areas appear to be less susceptible to the harmful effects of inflammation caused by other pathogens such as SARS-CoV-2.

2021 ◽  
Vol 17 (4) ◽  
pp. e1009430
Author(s):  
Rajan Guha ◽  
Anna Mathioudaki ◽  
Safiatou Doumbo ◽  
Didier Doumtabe ◽  
Jeff Skinner ◽  
...  

In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1β, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1β and IL-6 following Pf-iRBC stimulation compared to 4–6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581.


2019 ◽  
Vol 25 (10) ◽  
pp. 1595-1602 ◽  
Author(s):  
Dianbo Yao ◽  
Ming Dong ◽  
Chaoliu Dai ◽  
Shuodong Wu

Abstract Dysregulated inflammatory responses play a pivotal role in the initiation, development, and progression of tumors, as demonstrated by the association between ulcerative colitis and the increased risk of colon carcinoma. In this review, the underlying mechanisms for the initiation and development of ulcerative colitis and colitis-associated cancer are described, mainly focusing on the inflammation and inflammatory cytokine. Disruption of the intestinal mucosal barrier and bacterial invasion resulted in intestinal inflammation; and further TLR4/NF-κB stimulation in intestinal epithelial cells, inflammatory cell infiltration, and inflammatory cytokine release all confer survival advantages to or promote abnormal proliferation in susceptible cells. Importantly, the respective roles of TLR4/NF-κB, TNF–α, and IL-6 in intestinal epithelial cells and inflammatory cells are summarized in detail. A thorough understanding of these molecular mechanisms may help researchers and clinicians to explore novel approaches for the prevention and treatment of colitis-associated cancer.


2017 ◽  
Vol 114 (49) ◽  
pp. E10568-E10577 ◽  
Author(s):  
Anton Götz ◽  
Mei San Tang ◽  
Maureen C. Ty ◽  
Charles Arama ◽  
Aissata Ongoiba ◽  
...  

Dendritic cells (DCs) are activated by pathogens to initiate and shape immune responses. We found that the activation of DCs by Plasmodium falciparum, the main causative agent of human malaria, induces a highly unusual phenotype by which DCs up-regulate costimulatory molecules and secretion of chemokines, but not of cytokines typical of inflammatory responses (IL-1β, IL-6, IL-10, TNF). Similar results were obtained with DCs obtained from malaria-naïve US donors and malaria-experienced donors from Mali. Contact-dependent cross-talk between the main DC subsets, plasmacytoid and myeloid DCs (mDCs) was necessary for increased chemokine and IFN-α secretion in response to the parasite. Despite the absence of inflammatory cytokine secretion, mDCs incubated with P. falciparum-infected erythrocytes activated antigen-specific naïve CD4+ T cells to proliferate and secrete Th1-like cytokines. This unexpected response of human mDCs to P. falciparum exhibited a transcriptional program distinct from a classical LPS response, pointing to unique P. falciparum-induced activation pathways that may explain the uncharacteristic immune response to malaria.


2020 ◽  
Vol 19 (7) ◽  
pp. 483-494
Author(s):  
Tyler J. Wenzel ◽  
Evan Kwong ◽  
Ekta Bajwa ◽  
Andis Klegeris

: Glial cells, including microglia and astrocytes, facilitate the survival and health of all cells within the Central Nervous System (CNS) by secreting a range of growth factors and contributing to tissue and synaptic remodeling. Microglia and astrocytes can also secrete cytotoxins in response to specific stimuli, such as exogenous Pathogen-Associated Molecular Patterns (PAMPs), or endogenous Damage-Associated Molecular Patterns (DAMPs). Excessive cytotoxic secretions can induce the death of neurons and contribute to the progression of neurodegenerative disorders, such as Alzheimer’s disease (AD). The transition between various activation states of glia, which include beneficial and detrimental modes, is regulated by endogenous molecules that include DAMPs, cytokines, neurotransmitters, and bioactive lipids, as well as a diverse group of mediators sometimes collectively referred to as Resolution-Associated Molecular Patterns (RAMPs). RAMPs are released by damaged or dying CNS cells into the extracellular space where they can induce signals in autocrine and paracrine fashions by interacting with glial cell receptors. While the complete range of their effects on glia has not been described yet, it is believed that their overall function is to inhibit adverse CNS inflammatory responses, facilitate tissue remodeling and cellular debris removal. This article summarizes the available evidence implicating the following RAMPs in CNS physiological processes and neurodegenerative diseases: cardiolipin (CL), prothymosin α (ProTα), binding immunoglobulin protein (BiP), heat shock protein (HSP) 10, HSP 27, and αB-crystallin. Studies on the molecular mechanisms engaged by RAMPs could identify novel glial targets for development of therapeutic agents that effectively slow down neuroinflammatory disorders including AD.


2019 ◽  
Vol 19 (7) ◽  
pp. 921-928 ◽  
Author(s):  
Sadiya Bi Shaikh ◽  
Ashwini Prabhu ◽  
Yashodhar Prabhakar Bhandary

Background: Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that has gained a lot of attention because of its involvement in respiratory diseases. Interleukin-17 cytokine family includes six members, out of which, IL-17A participates towards the immune responses in allergy and inflammation. It also modulates the progression of respiratory disorders. Objective: The present review is an insight into the involvement and contributions of the proinflammatory cytokine IL-17A in chronic respiratory diseases like Idiopathic Pulmonary Fibrosis (IPF), Chronic Obstructive Pulmonary Distress (COPD), asthma, pneumonia, obliterative bronchiolitis, lung cancer and many others. Conclusion: IL-17A is a major regulator of inflammatory responses. In all the mentioned diseases, IL- 17A plays a prime role in inducing the diseases, whereas the lack of this pro-inflammatory cytokine reduces the severity of respective respiratory diseases. Thereby, this review suggests IL-17A as an instrumental target in chronic respiratory diseases.


2021 ◽  
Vol 22 (6) ◽  
pp. 2893
Author(s):  
Asami Watahiki ◽  
Seira Hoshikawa ◽  
Mitsuki Chiba ◽  
Hiroshi Egusa ◽  
Satoshi Fukumoto ◽  
...  

Lipin2 is a phosphatidate phosphatase that plays critical roles in fat homeostasis. Alterations in Lpin2, which encodes lipin2, cause the autoinflammatory bone disorder Majeed syndrome. Lipin2 limits lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. However, little is known about the precise molecular mechanisms underlying its anti-inflammatory function. In this study, we attempted to elucidate the molecular link between the loss of lipin2 function and autoinflammatory bone disorder. Using a Lpin2 knockout murine macrophage cell line, we showed that lipin2 deficiency enhances innate immune responses to LPS stimulation through excessive activation of the NF-κB signaling pathway, partly because of TAK1 signaling upregulation. Lipin2 depletion also enhanced RANKL-mediated osteoclastogenesis and osteoclastic resorption activity accompanied by NFATc1 dephosphorylation and increased nuclear accumulation. These results suggest that lipin2 suppresses the development of autoinflammatory bone disorder by fine-tuning proinflammatory responses and osteoclastogenesis in macrophages. Therefore, this study provides insights into the molecular pathogenesis of monogenic autoinflammatory bone disorders and presents a potential therapeutic intervention.


2021 ◽  
Vol 22 (2) ◽  
pp. 751
Author(s):  
Min Young Park ◽  
Bala Murali Krishna Vasamsetti ◽  
Wan Seop Kim ◽  
Hee Jung Kang ◽  
Do-Young Kim ◽  
...  

Porcine heart xenotransplantation is a potential treatment for patients with end-stage heart failure. To understand molecular mechanisms of graft rejection after heart transplantation, we transplanted a 31-day-old alpha-1,3-galactosyltransferase knockout (GTKO) porcine heart to a five-year-old cynomolgus monkey. Histological and transcriptome analyses were conducted on xenografted cardiac tissue at rejection (nine days after transplantation). The recipient monkey’s blood parameters were analyzed on days −7, −3, 1, 4, and 7. Validation was conducted by quantitative real-time PCR (qPCR) with selected genes. A non-transplanted GTKO porcine heart from an age-matched litter was used as a control. The recipient monkey showed systemic inflammatory responses, and the rejected cardiac graft indicated myocardial infarction and cardiac fibrosis. The transplanted heart exhibited a total of 3748 differentially expressed genes compared to the non-transplanted heart transcriptome, with 2443 upregulated and 1305 downregulated genes. Key biological pathways involved at the terminal stage of graft rejection were cardiomyopathies, extracellular interactions, and ion channel activities. The results of qPCR evaluation were in agreement with the transcriptome data. Transcriptome analysis of porcine cardiac tissue at graft rejection reveals dysregulation of the key molecules and signaling pathways, which play relevant roles on structural and functional integrities of the heart.


2021 ◽  
Vol 22 (15) ◽  
pp. 7856
Author(s):  
Sang Min Lee ◽  
Kyung-No Son ◽  
Dhara Shah ◽  
Marwan Ali ◽  
Arun Balasubramaniam ◽  
...  

Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 136
Author(s):  
Baolong Liu ◽  
Jiujiu Yu

The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 120
Author(s):  
Maged E. Mohamed ◽  
Mohamed S. Abduldaium ◽  
Nancy S. Younis

Background: Myocardial infarction (MI), a life-threatening disorder, arises from the imbalance between oxygen supply and myocardial demand. Linalool is a naturally occurring monoterpenes with proved numerous pharmacological actions. This study investigated the cardioprotective effect of Linalool on isoproterenol (ISO)-induced MI in rat models and explored part of the underlying molecular mechanisms. Methods: Rats were divided into five groups; groups I and II served as normal and linalool control groups, Group III administered ISO alone; groups V and VI received two different doses of Linalool and were challenged by ISO. Different biochemical parameters were determined, including hemodynamic, infarction size, cardiac enzymes, apoptotic markers, and inflammatory mediators. Results: Linalool limited the infarcted area size and diminished the elevated cardiac enzymes. Linalool escalated HO-1 and Nrf2, both nuclear and cytosol fractions, and reduced Keap 1. Linalool enhanced cardiac antioxidant activities, reduced inflammatory cytokines (tumor necrosis factor-alpha (TNF-α), nuclear factor-κ-B (NF-κB), interleukin 1 beta (IL-1β), interleukin 6 (IL-6)), apoptotic markers (Caspase-3, Caspase-9, and Bax), and elevated Bcl2. Conclusion: Linalool could act as an effective cardioprotective agent in the MI model through improving the oxidative condition, probably via the Nrf2/HO-1 pathway and by abolishing both apoptotic and inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document