scholarly journals Pumiliotoxin metabolism and molecular physiology in a poison frog

2020 ◽  
Author(s):  
Aurora Alvarez-Buylla ◽  
Cheyenne Y. Payne ◽  
Charles Vidoudez ◽  
Sunia A. Trauger ◽  
Lauren A. O’Connell

ABSTRACTPoison frogs bioaccumulate alkaloids for chemical defense from their arthropod diet. These small molecules are sequestered from their gastrointestinal tract and transported to the skin for storage. Although many alkaloids are accumulated without modification, some poison frog species can metabolize pumiliotoxin (PTX 251D) into the more potent allopumiliotoxin (aPTX 267A). Despite extensive research characterizing the chemical arsenal of poison frogs, the physiological mechanisms involved in the sequestration and metabolism of individual alkaloids is unknown. We performed a feeding experiment with the Dyeing poison frog (Dendrobates tinctorius) to ask if this species can metabolize PTX 251D into aPTX 267A and what gene expression changes are associated with PTX 251D exposure in the intestines, liver, and skin. We found that D. tinctorius can metabolize PTX 251D into aPTX 267A, and that PTX 251D exposure changed the expression of genes involved in immune system function and small molecule metabolism and transport. These results show that individual alkaloids can modify gene expression across poison frog tissues and suggest that different alkaloid classes in wild diets may induce specific physiological changes for accumulation and metabolism.

2019 ◽  
Author(s):  
Stephanie N. Caty ◽  
Aurora Alvarez-Buylla ◽  
Gary D. Byrd ◽  
Charles Vidoudez ◽  
Alexandre B. Roland ◽  
...  

AbstractPoison frogs sequester small molecule lipophilic alkaloids from their diet of leaf litter arthropods for use as chemical defenses against predation. Although the dietary acquisition of chemical defenses in poison frogs is well-documented, the physiological mechanisms of alkaloid sequestration has not been investigated. Here, we used RNA sequencing and proteomics to determine how alkaloids impact mRNA or protein abundance in the Little Devil Frog (Oophaga sylvatica) and compared wild caught chemically defended frogs to laboratory frogs raised on an alkaloid-free diet. To understand how poison frogs move alkaloids from their diet to their skin granular glands, we focused on measuring gene expression in the intestines, skin, and liver. Across these tissues, we found many differentially expressed transcripts involved in small molecule transport and metabolism, as well as sodium channels and other ion pumps. We then used proteomic approaches to quantify plasma proteins, where we found several protein abundance differences between wild and laboratory frogs, including the amphibian neurotoxin binding protein saxiphilin. Finally, because many blood proteins are synthesized in the liver, we used thermal proteome profiling as an untargeted screen for soluble proteins that bind the alkaloid decahydroquinoline. Using this approach, we identified several candidate proteins that interact with this alkaloid, including saxiphilin. These transcript and protein abundance patterns suggest the presence of alkaloids influences frog physiology and that small molecule transport proteins may be involved in toxin bioaccumulation in dendrobatid poison frogs.ResumenLas ranas venenosas obtienen moléculas lipofílicas a partir de su dieta de artrópodos que luego usan como una defensa química contra depredadores. Mientras que la acumulación de toxinas dietéticas ha sido bien documentada, el mecanismo fisiológico de obtención de alcaloides no ha sido investigado. En este estudio usamos secuenciación de RNA y proteómica para determinar cómo la presencia de alcaloides afecta la abundancia de mRNA y proteínas en ranas diablito (Oophaga sylvatica) silvestres con defensas químicas en comparación a ranas diablito criadas en laboratorio con una dieta sin alcaloides. Para entender cómo las ranas venenosas mueven los alcaloides de su dieta a las glándulas granulares en su piel, nos enfocamos en medir la expresión de genes en tres tejidos: intestinos, piel e hígado. En estos tejidos, encontramos varios transcriptomas regulados diferencialmente que tienen actividades involucradas con el transporte y metabolismo de pequeñas moléculas, además de canales de sodio y bombas de iones. Luego usamos métodos proteómicos para cuantificar proteínas en plasma, donde encontramos varias diferencias en abundancia de proteínas entre las ranas silvestres y de laboratorio, incluyendo la proteína anfibia de fijación de toxinas, saxifilina. Finalmente, debido a que muchas proteínas encontradas en la sangre se sintetizan en el hígado, usamos la técnica de perfilación proteómica termal para seleccionar imparcialmente las proteínas solubles que fijan el alcaloide decahydroquinolina. Usando este método, identificamos varias posibles proteínas que interactúan con este alcaloide, incluyendo saxifilina. Estos patrones de cambios en abundancia de transcriptomas y proteínas en ranas con y sin defensas químicas sugieren que la presencia de alcaloides influye en la fisiología de las ranas y que moléculas proteicas pequeñas de transporte podrían estar involucradas en la bioacumulación de toxinas en ranas venenosas dendrobátidos.Summary StatementChemically defended wild poison frogs have gene expression and protein abundance differences across several tissue systems compared to poison frogs reared on an alkaloid-free diet.


2020 ◽  
Vol 13 (3) ◽  
pp. 304-310
Author(s):  
Jarosław Woroń

The development of pain is associated with numerous physiological mechanisms. Improper acute pain treatment significantly reduces the quality of life and leads to a number of physiological changes that adversely affect the general condition of the patient. In many cases, inadequate analgesic therapy results in the transition from acute to chronic pain. For this reason, it is extremely important to use drugs that synergistically affect various pain mechanisms. Combined preparations, including the combination of tramadol and dexketoprofen, are very effective. This combination has many advantages, including proven efficacy and tolerability, ensures better treatment adherence and is easy to administer.


2021 ◽  
Vol 11 (11) ◽  
pp. 4723
Author(s):  
Rosaria Scudiero ◽  
Chiara Maria Motta ◽  
Palma Simoniello

The cleidoic eggs of oviparous reptiles are protected from the external environment by membranes and a parchment shell permeable to water and dissolved molecules. As a consequence, not only physical but also chemical insults can reach the developing embryos, interfering with gene expression. This review provides information on the impact of the exposure to cadmium contamination or thermal stress on gene expression during the development of Italian wall lizards of the genus Podarcis. The results obtained by transcriptomic analysis, although not exhaustive, allowed to identify some stress-reactive genes and, consequently, the molecular pathways in which these genes are involved. Cadmium-responsive genes encode proteins involved in cellular protection, metabolism and proliferation, membrane trafficking, protein interactions, neuronal transmission and plasticity, immune response, and transcription regulatory factors. Cold stress changes the expression of genes involved in transcriptional/translational regulation and chromatin remodeling and inhibits the transcription of a histone methyltransferase with the probable consequence of modifying the epigenetic control of DNA. These findings provide transcriptome-level evidence of how terrestrial vertebrate embryos cope with stress, giving a key to use in population survival and environmental change studies. A better understanding of the genes contributing to stress tolerance in vertebrates would facilitate methodologies and applications aimed at improving resistance to unfavourable environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Criado-Mesas ◽  
N. Abdelli ◽  
A. Noce ◽  
M. Farré ◽  
J. F. Pérez ◽  
...  

AbstractThere is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050309
Author(s):  
Tao You ◽  
Hailun Zhang ◽  
Mingyu Yang ◽  
Xiao Wang ◽  
Yangming Guo

In biological systems, gene expression is an important subject. In order to clarify the specific process of gene expression, mathematical tools are needed to simulate the process. The Boolean network (BN) is a good mathematical tool. In this paper, we study a Boolean network with intermittent perturbations. This is of great significance for studying genetic mutations in bioengineering. The expression of genes in the internal system of a living being is a very complicated process, and it is clear that the process is trans-ageal for humans. Through the intermittent control and pulse control of the BN, we can obtain the trajectory of gene expression better and faster, which will provide a very important theoretical basis for our next research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marisa Maia ◽  
António E. N. Ferreira ◽  
Rui Nascimento ◽  
Filipa Monteiro ◽  
Francisco Traquete ◽  
...  

Abstract Vitis vinifera, one of the most cultivated fruit crops, is susceptible to several diseases particularly caused by fungus and oomycete pathogens. In contrast, other Vitis species (American, Asian) display different degrees of tolerance/resistance to these pathogens, being widely used in breeding programs to introgress resistance traits in elite V. vinifera cultivars. Secondary metabolites are important players in plant defence responses. Therefore, the characterization of the metabolic profiles associated with disease resistance and susceptibility traits in grapevine is a promising approach to identify trait-related biomarkers. In this work, the leaf metabolic composition of eleven Vitis genotypes was analysed using an untargeted metabolomics approach. A total of 190 putative metabolites were found to discriminate resistant/partial resistant from susceptible genotypes. The biological relevance of discriminative compounds was assessed by pathway analysis. Several compounds were selected as promising biomarkers and the expression of genes coding for enzymes associated with their metabolic pathways was analysed. Reference genes for these grapevine genotypes were established for normalisation of candidate gene expression. The leucoanthocyanidin reductase 2 gene (LAR2) presented a significant increase of expression in susceptible genotypes, in accordance with catechin accumulation in this analysis group. Up to our knowledge this is the first time that metabolic constitutive biomarkers are proposed, opening new insights into plant selection on breeding programs.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2090-2093 ◽  
Author(s):  
Dirk Kienle ◽  
Axel Benner ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
...  

The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.


Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


2009 ◽  
Vol 29 (18) ◽  
pp. 4949-4958 ◽  
Author(s):  
Stephanie J. Ellison-Zelski ◽  
Natalia M. Solodin ◽  
Elaine T. Alarid

ABSTRACT Gene expression results from the coordinated actions of transcription factor proteins and coregulators. Estrogen receptor alpha (ERα) is a ligand-activated transcription factor that can both activate and repress the expression of genes. Activation of transcription by estrogen-bound ERα has been studied in detail, as has antagonist-induced repression, such as that which occurs by tamoxifen. How estrogen-bound ERα represses gene transcription remains unclear. In this report, we identify a new mechanism of estrogen-induced transcriptional repression by using the ERα gene, ESR1. Upon estrogen treatment, ERα is recruited to two sites on ESR1, one distal (ENH1) and the other at the proximal (A) promoter. Coactivator proteins, namely, p300 and AIB1, are found at both ERα-binding sites. However, recruitment of the Sin3A repressor, loss of RNA polymerase II, and changes in histone modifications occur only at the A promoter. Reduction of Sin3A expression by RNA interference specifically inhibits estrogen-induced repression of ESR1. Furthermore, an estrogen-responsive interaction between Sin3A and ERα is identified. These data support a model of repression wherein actions of ERα and Sin3A at the proximal promoter can overcome activating signals at distal or proximal sites and ultimately decrease gene expression.


Sign in / Sign up

Export Citation Format

Share Document