scholarly journals WEVar: a novel statistical learning framework for predicting noncoding regulatory variants

2020 ◽  
Author(s):  
Ye Wang ◽  
Yuchao Jiang ◽  
Bing Yao ◽  
Kun Huang ◽  
Yunlong Liu ◽  
...  

AbstractUnderstanding the functional consequence of noncoding variants is of great interest. Though genome-wide association studies (GWAS) or quantitative trait locus (QTL) analyses have identified variants associated with traits or molecular phenotypes, most of them are located in the noncoding regions, making the identification of causal variants a particular challenge. Existing computational approaches developed for for prioritizing non-coding variants produce inconsistent and even conflicting results. To address these challenges, we propose a novel statistical learning framework, which directly integrates the precomputed functional scores from representative scoring methods. It will maximize the usage of integrated methods by automatically learning the relative contribution of each method and produce an ensemble score as the final prediction. The framework consists of two modes. The first “context-free” mode is trained using curated causal regulatory variants from a wide range of context and is applicable to predict noncoding variants of unknown and diverse context. The second “context-dependent” mode further improves the prediction when the training and testing variants are from the same context. By evaluating the framework via both simulation and empirical studies, we demonstrate that it outperforms integrated scoring methods and the ensemble score successfully prioritizes experimentally validated regulatory variants in multiple risk loci.

2020 ◽  
Vol 21 (6) ◽  
pp. 466-470
Author(s):  
Emine Kandemis ◽  
Gulten Tuncel ◽  
Ozen Asut ◽  
Sehime G. Temel ◽  
Mahmut C. Ergoren

Background: The use of psychoactive substances is one of the most dangerous social problems worldwide. Nicotine dependence results from the interaction between neurobiological, environmental and genetic factors. Serotonin is a neurotransmitter that has a wide range of central nervous system activities. The serotonin transporter gene has been previously linked to psychological traits. Objective: A variable number of tandem repeats within the serotonin transporter-linked polymorphic gene region are believed to alter the transcriptional efficiency of the 5-HTT gene. Therefore, we aimed to investigate the association between this polymorphic site and smoking behavior in the Turkish Cypriot population. Methods: A total of 259 (100 smokers, 100 non-smokers and 59 ex-smokers) Turkish Cypriots were included in this population-based cross-sectional study. Genomic DNA was extracted from peripheral blood samples and the 5-HTTVNTR2 polymorphisms were determined by the PCR-RFLP. Results: The allelic frequency and genotype distribution results of this study showed a strong association (P<0.0001) between smokers and non-smokers. No statistical significance was found between non-smokers and ex-smokers. Conclusion: This is the first genetic epidemiology study to investigate the allelic frequencies of 5-HTTVNTR2 polymorphisms associated with smoking behavior in the Turkish Cypriot population. Based on the results of this study, genome-wide association studies should be designed for preventive medicine in this population.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Basel M. Al-Barghouthi ◽  
Larry D. Mesner ◽  
Gina M. Calabrese ◽  
Daniel Brooks ◽  
Steven M. Tommasini ◽  
...  

AbstractGenome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257265
Author(s):  
Seung-Soo Kim ◽  
Adam D. Hudgins ◽  
Jiping Yang ◽  
Yizhou Zhu ◽  
Zhidong Tu ◽  
...  

Type 1 diabetes (T1D) is an organ-specific autoimmune disease, whereby immune cell-mediated killing leads to loss of the insulin-producing β cells in the pancreas. Genome-wide association studies (GWAS) have identified over 200 genetic variants associated with risk for T1D. The majority of the GWAS risk variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes substantially contribute to T1D. However, identification of causal regulatory variants associated with T1D risk and their affected genes is challenging due to incomplete knowledge of non-coding regulatory elements and the cellular states and processes in which they function. Here, we performed a comprehensive integrated post-GWAS analysis of T1D to identify functional regulatory variants in enhancers and their cognate target genes. Starting with 1,817 candidate T1D SNPs defined from the GWAS catalog and LDlink databases, we conducted functional annotation analysis using genomic data from various public databases. These include 1) Roadmap Epigenomics, ENCODE, and RegulomeDB for epigenome data; 2) GTEx for tissue-specific gene expression and expression quantitative trait loci data; and 3) lncRNASNP2 for long non-coding RNA data. Our results indicated a prevalent enhancer-based immune dysregulation in T1D pathogenesis. We identified 26 high-probability causal enhancer SNPs associated with T1D, and 64 predicted target genes. The majority of the target genes play major roles in antigen presentation and immune response and are regulated through complex transcriptional regulatory circuits, including those in HLA (6p21) and non-HLA (16p11.2) loci. These candidate causal enhancer SNPs are supported by strong evidence and warrant functional follow-up studies.


2021 ◽  
Author(s):  
Jielin Xu ◽  
Yuan Hou ◽  
Yadi Zhou ◽  
Ming Hu ◽  
Feixiong Cheng

Human genome sequencing studies have identified numerous loci associated with complex diseases, including Alzheimer's disease (AD). Translating human genetic findings (i.e., genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery, however, remains a major challenge. To address this critical problem, we present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). NETTAG is capable of integrating multi-genomics data along with the protein-protein interactome to infer putative risk genes and drug targets impacted by GWAS loci. Specifically, we leverage non-coding GWAS loci effects on expression quantitative trait loci (eQTLs), histone-QTLs, and transcription factor binding-QTLs, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions. The key premises of NETTAG are that the disease risk genes exhibit distinct functional characteristics compared to non-risk genes and therefore can be distinguished by their aggregated genomic features under the human protein interactome. Applying NETTAG to the latest AD GWAS data, we identified 156 putative AD-risk genes (i.e., APOE, BIN1, GSK3B, MARK4, and PICALM). We showed that predicted risk genes are: 1) significantly enriched in AD-related pathobiological pathways, 2) more likely to be differentially expressed regarding transcriptome and proteome of AD brains, and 3) enriched in druggable targets with approved medicines (i.e., choline and ibudilast). In summary, our findings suggest that understanding of human pathobiology and therapeutic development could benefit from a network-based deep learning methodology that utilizes GWAS findings under the multimodal genomic analyses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthias Munz ◽  
Inken Wohlers ◽  
Eric Simon ◽  
Tobias Reinberger ◽  
Hauke Busch ◽  
...  

AbstractExploration of genetic variant-to-gene relationships by quantitative trait loci such as expression QTLs is a frequently used tool in genome-wide association studies. However, the wide range of public QTL databases and the lack of batch annotation features complicate a comprehensive annotation of GWAS results. In this work, we introduce the tool “Qtlizer” for annotating lists of variants in human with associated changes in gene expression and protein abundance using an integrated database of published QTLs. Features include incorporation of variants in linkage disequilibrium and reverse search by gene names. Analyzing the database for base pair distances between best significant eQTLs and their affected genes suggests that the commonly used cis-distance limit of 1,000,000 base pairs might be too restrictive, implicating a substantial amount of wrongly and yet undetected eQTLs. We also ranked genes with respect to the maximum number of tissue-specific eQTL studies in which a most significant eQTL signal was consistent. For the top 100 genes we observed the strongest enrichment with housekeeping genes (P = 2 × 10–6) and with the 10% highest expressed genes (P = 0.005) after grouping eQTLs by r2 > 0.95, underlining the relevance of LD information in eQTL analyses. Qtlizer can be accessed via https://genehopper.de/qtlizer or by using the respective Bioconductor R-package (https://doi.org/10.18129/B9.bioc.Qtlizer).


2020 ◽  
Vol 29 (11) ◽  
pp. 1922-1932
Author(s):  
Priyanka Nandakumar ◽  
Dongwon Lee ◽  
Thomas J Hoffmann ◽  
Georg B Ehret ◽  
Dan Arking ◽  
...  

Abstract Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ~100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We aggregate variants within these putative CREs within 50 Kb of the start or end of ‘expressed’ genes in these tissues or cell types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Gongcheng Li ◽  
Tiejun Pan ◽  
Dan Guo ◽  
Long-Cheng Li

Single nucleotide polymorphisms (SNPs) occurring in noncoding sequences have largely been ignored in genome-wide association studies (GWAS). Yet, amounting evidence suggests that many noncoding SNPs especially those that are in the vicinity of protein coding genes play important roles in shaping chromatin structure and regulate gene expression and, as such, are implicated in a wide variety of diseases. One of such regulatory SNPs (rSNPs) is the E-cadherin (CDH1) promoter −160C/A SNP (rs16260) which is known to affect E-cadherin promoter transcription by displacing transcription factor binding and has been extensively scrutinized for its association with several diseases especially malignancies. Findings from studying this SNP highlight important clinical relevance of rSNPs and justify their inclusion in future GWAS to identify novel disease causing SNPs.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009060
Author(s):  
Corbin Quick ◽  
Xiaoquan Wen ◽  
Gonçalo Abecasis ◽  
Michael Boehnke ◽  
Hyun Min Kang

Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.


2020 ◽  
Author(s):  
Basel Al-Barghouthi ◽  
Larry D. Mesner ◽  
Gina M. Calabrese ◽  
Daniel Brooks ◽  
Steve M. Tommasini ◽  
...  

ABSTRACTGenome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we used Diversity Outbred (DO) mice to directly address these limitations by performing the first systems genetics analysis of over 50 complex skeletal phenotypes. We applied a network approach to cortical bone RNA-seq data to discover 46 genes likely to be causal for human BMD GWAS associations, including the novel genes SERTAD4 and GLT8D2. We also performed GWAS in the DO for a wide-range of bone traits and identified Qsox1 as a novel gene influencing cortical bone accrual and bone strength. Our results provide a new perspective on the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


2017 ◽  
Author(s):  
Clare Bycroft ◽  
Colin Freeman ◽  
Desislava Petkova ◽  
Gavin Band ◽  
Lloyd T. Elliott ◽  
...  

AbstractThe UK Biobank project is a large prospective cohort study of ~500,000 individuals from across the United Kingdom, aged between 40-69 at recruitment. A rich variety of phenotypic and health-related information is available on each participant, making the resource unprecedented in its size and scope. Here we describe the genome-wide genotype data (~805,000 markers) collected on all individuals in the cohort and its quality control procedures. Genotype data on this scale offers novel opportunities for assessing quality issues, although the wide range of ancestries of the individuals in the cohort also creates particular challenges. We also conducted a set of analyses that reveal properties of the genetic data – such as population structure and relatedness – that can be important for downstream analyses. In addition, we phased and imputed genotypes into the dataset, using computationally efficient methods combined with the Haplotype Reference Consortium (HRC) and UK10K haplotype resource. This increases the number of testable variants by over 100-fold to ~96 million variants. We also imputed classical allelic variation at 11 human leukocyte antigen (HLA) genes, and as a quality control check of this imputation, we replicate signals of known associations between HLA alleles and many common diseases. We describe tools that allow efficient genome-wide association studies (GWAS) of multiple traits and fast phenome-wide association studies (PheWAS), which work together with a new compressed file format that has been used to distribute the dataset. As a further check of the genotyped and imputed datasets, we performed a test-case genome-wide association scan on a well-studied human trait, standing height.


Sign in / Sign up

Export Citation Format

Share Document