scholarly journals Mechanics of the cellular microenvironment as perceived by cells in vivo

2021 ◽  
Author(s):  
Alessandro Mongera ◽  
Marie Pochitaloff ◽  
Hannah J. Gustafson ◽  
Georgina A. Stooke-Vaughan ◽  
Payam Rowghanian ◽  
...  

Tissue morphogenesis and repair, as well as organ homeostasis, require cells to constantly monitor their 3D microenvironment and adapt their behaviors in response to local biochemical and mechanical cues1-6. In vitro studies have shown that substrate stiffness and stress relaxation are important mechanical parameters in the control of cell proliferation and differentiation, stem cell maintenance, cell migration 7-11, as well as tumor progression and metastasis12,13. Yet, the mechanical parameters of the microenvironment that cells perceive in vivo, within 3D tissues, remain unknown. In complex materials with strain- and time-dependent material properties, the perceived mechanical parameters depend both on the strain and timescales at which the material is mechanically probed14. Here, we quantify in vivo and in situ the mechanics of the cellular microenvironment that cells probe during vertebrate presomitic mesoderm (PSM) specification. By analyzing the magnitude and dynamics of endogenous, cell-generated strains, we show that individual cells preferentially probe the stiffness associated with deformations of the supracellular, foam-like tissue architecture. We reveal how stress relaxation leads to a perceived microenvironment stiffness that decreases over time, with cells probing the softest regime. While stress relaxation timescales are spatially uniform in the tissue, most mechanical parameters, including those probed by cells, vary along the anteroposterior axis, as mesodermal progenitors commit to different lineages. Understanding the mechanical parameters that cells probe in their native 3D environment is important for quantitative studies of mechanosensation in vivo2-4,6,15 and can help design scaffolds for tissue engineering applications16-18.

2018 ◽  
Vol 115 (26) ◽  
pp. 6786-6791 ◽  
Author(s):  
Jiaxi Wu ◽  
Huaizhu Wu ◽  
Jinping An ◽  
Christie M. Ballantyne ◽  
Jason G. Cyster

CD11c, also known as integrin alpha X, is the most widely used defining marker for dendritic cells (DCs). CD11c can bind complement iC3b and mediate phagocytosis in vitro, for which it is also referred to as complement receptor 4. However, the functions of this prominent marker protein in DCs, especially in vivo, remain poorly defined. Here, in the process of studying DC activation and immune responses induced by cells lacking self-CD47, we found that DC capture of CD47-deficient cells and DC activation was dependent on the integrin-signaling adaptor Talin1. Specifically, CD11c and its partner Itgb2 were required for DC capture of CD47-deficient cells. CD11b was not necessary for this process but could partially compensate in the absence of CD11c. Mice with DCs lacking Talin1, Itgb2, or CD11c were defective in supporting T-cell proliferation and differentiation induced by CD47-deficient cell associated antigen. These findings establish a critical role for CD11c in DC antigen uptake and activation in vivo. They may also contribute to understanding the functional mechanism of CD47-blockade therapies.


1998 ◽  
Vol 76 (6) ◽  
pp. 957-969 ◽  
Author(s):  
Jean-Noël Freund ◽  
Claire Domon-Dell ◽  
Michèle Kedinger ◽  
Isabelle Duluc

The past years have witnessed an increasing number of reports relative to homeobox genes in endoderm-derived tissues. In this review, we focus on the caudal-related Cdx-1 and Cdx-2 homeobox genes to give an overview of the in vivo, in vitro, and ex vivo approaches that emphasize their primary role in intestinal development and in the control of intestinal cell proliferation, differentiation, and identity. The participation of these genes in colon tumorigenesis and their identification as important actors of the oncogenic process are also discussed.Key words: caudal, epithelial cell proliferation and differentiation, cancer.


1992 ◽  
Vol 263 (2) ◽  
pp. C343-C347 ◽  
Author(s):  
V. Quemener ◽  
Y. Blanchard ◽  
D. Lescoat ◽  
R. Havouis ◽  
J. P. Moulinoux

Polyamines (PA), polycations present in all mammalian cells, are essential for cell proliferation and differentiation. In vitro, PA are known to bind to DNA with a high affinity. In vivo, the intimate association of endogenous PA with highly condensed chromatin has been reported. During spermatogenesis, when processes of cell proliferation and differentiation take place, the potential role of polyamines has not been studied in depth. We report here the PA levels measured in human spermatogenic cell nuclei at different stages of differentiation. Cell populations (spermatocytes and round, elongating, or elongated spermatids) were obtained after submitting human testes to a trypsin-deoxyribonuclease digestion, then to a centrifugal elutriation and Percoll gradient centrifugation. A significant and progressive nuclear spermine level decrease was observed from primary spermatocytes to elongated spermatids. This release of spermine from nuclei was concomitant with three major events in mammalian spermiogenesis: the reduction of DNA transcription activity, the replacement of histone proteins by protamines, and the compaction of chromatin. This is the first report arguing a release of nuclear spermine during an in vivo physiological cell differentiation process.


Blood ◽  
2021 ◽  
Author(s):  
Andrea Brendolan ◽  
Vincenzo Russo

Cholesterol is a vital lipid for cellular functions. It is necessary for membrane biogenesis, cell proliferation and differentiation. In addition to maintaining cell integrity and permeability, increasing evidence indicates a strict link between cholesterol homeostasis, inflammation and haematological tumors. This makes cholesterol homeostasis an optimal therapeutic target for hematopoietic malignancies. Manipulating cholesterol homeostasis either interfering with its synthesis or activating the reverse cholesterol transport via the engagement of liver X receptors (LXRs), affects the integrity of tumor cells both in vitro and in vivo. Cholesterol homeostasis has also been manipulated to restore antitumor immune responses in preclinical models. These observations have prompted clinical trials in acute myeloid leukemia (AML) to test the combination of chemotherapy with drugs interfering with cholesterol synthesis, i.e. statins. We review the role of cholesterol homeostasis in hematopoietic malignancies, as well as in cells of the tumor microenvironment, and discuss the potential use of lipid modulators for therapeutic purposes.


2021 ◽  
Author(s):  
Anita Sapoznikov ◽  
Stav Kozlovski ◽  
Sara W. Feigelson ◽  
Natalia Davidzohn ◽  
Noa Wigoda ◽  
...  

Lymphocyte priming in lymph nodes (LNs) depends on the formation of functional TCR specific immune synapses (ISs) with antigen (Ag) presenting dendritic cells. The high affinity LFA-1 ligand ICAM-1 has been implicated in different ISs studied in vitro. The in vivo roles of DC ICAM-1 in Ag stimulated T cell differentiation have been unclear. In newly generated DC conditional ICAM-1 knockout mice, we report that under Th1 polarizing conditions, ICAM-1 deficient DCs could not engage in stable conjugates with newly generated CD8 blasts. Nevertheless, these DCs triggered normal lymphocyte priming, proliferation and differentiation into functional cytotoxic T cells (CTLs) and central memory lymphocytes (Tcm) in both vaccinated and virus infected skin. Single cell RNAseq analysis confirmed that Tcm were normally generated in these mice and gave rise to normal T effectors during a recall skin response. Our results suggest that although CD8 T cell blasts tightly bind DC-ICAM-1, strongly adhesive DC-T ISs are not necessary for functional TCR dependent DC mediated CD8 T cell proliferation and differentiation into productive effector and memory lymphocytes.


2005 ◽  
Vol 17 (9) ◽  
pp. 63
Author(s):  
M. Grounds

Skeletal muscle is formed by mononucleated precursor cells (myoblasts) that cease cell proliferation to start differentiation; this results in fusion between the myoblasts to form multinucleated cells (myotubes) that continue to differentiate (and fuse with more muscle cells) and mature into myofibres. Myogenesis has been widely used as a model to study in vitro factors controlling cell proliferation and differentiation. Condition in vitro may not reflect what happens in the more complex in vivo environment. Some of the key issues are what activates quiescent myoblasts in mature skeletal muscle in vivo, and what controls the switch between proliferation and differentiation? The role of the matrix, and molecules such as MyoD, p53, NFAT and IGF-1 will be considered.


1996 ◽  
Vol 320 (2) ◽  
pp. 359-363 ◽  
Author(s):  
Petra BILINSKI ◽  
Mark A. HALL ◽  
Herbert NEUHAUS ◽  
Cornelia GISSEL ◽  
John K. HEATH ◽  
...  

Interleukin-11 (IL-11) is a multifunctional cytokine involved in the regulation of cell proliferation and differentiation in a variety of cell types and tissues in vitro and in vivo. The effects of IL-11 were shown to be mediated by the IL-11 receptor (hereafter referred to as IL-11Rα), which is a ligand-binding subunit and provides ligand specificity in a functional multimeric signal-transduction complex with gp130. Here we show that the mouse genome contains a second gene encoding an IL-11-binding protein, referred to as IL-11Rβ. The structure of the IL-11Rβ gene is highly similar to that of IL-11Rα, and IL-11Rβ exhibits 99% sequence identity with IL-11Rα at the amino acid level. IL-11Rβ is co-expressed with IL-11Rα, albeit at lower levels, in embryos and in various adult tissues. IL-11Rβ transcripts are abundant in testis, and, in contrast with IL-11Rα, absent from skeletal muscle. IL-11Rβ expressed in vitro binds IL-11 with high affinity, suggesting that the mouse genome contains a second functional IL-11R.


1998 ◽  
Vol 333 (3) ◽  
pp. 645-654 ◽  
Author(s):  
Judit GARRIGA ◽  
Ana LIMÓN ◽  
Xavier MAYOL ◽  
Sushil G. RANE ◽  
Jeffrey H. ALBRECHT ◽  
...  

In the present study we have analysed the regulation of pocket protein expression and post-transcriptional modifications on cell proliferation and differentiation, both in vivo and in vitro. There are marked changes in pocket protein levels during these transitions, the most striking differences being observed between p130 and p107. The mechanisms responsible for regulating pocket protein levels seem to be dependent on both cell type and pocket protein, in addition to their dependence on the cell growth status. Changes in retinoblastoma protein and p107 levels are independent of their state of phosphorylation. However, whereas p130 phosphorylation to forms characteristic of quiescent/differentiated cells results in the accumulation of p130 protein, phosphorylation of p130 to one or more forms characteristic of cycling cells is accompanied by down-regulation of its protein levels. We also show here that the phosphorylation status and protein levels of p130 and p107 are regulated in vivo as in cultured cells. In vivo, changes in p130 forms are correlated with changes in E2F complexes. Moreover, the modulation of p130 and p107 status during cell differentiation in vitro is consistent with the patterns of protein expression and phosphorylation status found in mouse tissues. Thus in addition to the direct disruption of pocket protein/E2F complexes induced by cyclin/cyclin-dependent kinase, the results we report here indicate that the differential modulation of pocket protein levels constitutes a major mechanism that regulates the pool of each pocket protein that is accessible to E2F and/or other transcription factors.


2021 ◽  
Vol 22 (11) ◽  
pp. 5552
Author(s):  
Satnam Singh ◽  
Sachin Mishra ◽  
Song Juha ◽  
Manojit Pramanik ◽  
Parasuraman Padmanabhan ◽  
...  

The development of a biomimetic neuronal network from neural cells is a big challenge for researchers. Recent advances in nanotechnology, on the other hand, have enabled unprecedented tools and techniques for guiding and directing neural stem cell proliferation and differentiation in vitro to construct an in vivo-like neuronal network. Nanotechnology allows control over neural stem cells by means of scaffolds that guide neurons to reform synaptic networks in suitable directions in 3D architecture, surface modification/nanopatterning to decide cell fate and stimulate/record signals from neurons to find out the relationships between neuronal circuit connectivity and their pathophysiological functions. Overall, nanotechnology-mediated methods facilitate precise physiochemical controls essential to develop tools appropriate for applications in neuroscience. This review emphasizes the newest applications of nanotechnology for examining central nervous system (CNS) roles and, therefore, provides an insight into how these technologies can be tested in vitro before being used in preclinical and clinical research and their potential role in regenerative medicine and tissue engineering.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Nobuko Katoku-Kikyo ◽  
Ellen Paatela ◽  
Daniel L. Houtz ◽  
Britney Lee ◽  
Dane Munson ◽  
...  

Circadian rhythms regulate cell proliferation and differentiation, but circadian control of tissue regeneration remains elusive at the molecular level. Here, we show that proper myoblast differentiation and muscle regeneration are regulated by the circadian master regulators Per1 and Per2. Depletion of Per1 or Per2 suppressed myoblast differentiation in vitro and muscle regeneration in vivo, demonstrating their nonredundant functions. Both Per1 and Per2 were required for the activation of Igf2, an autocrine promoter of myoblast differentiation, accompanied by Per-dependent recruitment of RNA polymerase II, dynamic histone modifications at the Igf2 promoter and enhancer, and the promoter–enhancer interaction. This circadian epigenetic priming created a preferred time window for initiating myoblast differentiation. Consistently, muscle regeneration was faster if initiated at night, when Per1, Per2, and Igf2 were highly expressed compared with morning. This study reveals the circadian timing as a significant factor for effective muscle cell differentiation and regeneration.


Sign in / Sign up

Export Citation Format

Share Document