scholarly journals A vascularized tumoroid model for studying human glioblastoma angiogenesis

2021 ◽  
Author(s):  
A Stavropoulou Tatla ◽  
AW Justin ◽  
C Watts ◽  
AE Markaki

ABSTRACTGlioblastoma (GBM) angiogenesis is critical for the tumor’s fast growth and recurrence. Here, we report a biomimetic, in vitro vascularized tumoroid model with stromal surrounds. This model is used to recapitulate how individual components of the GBM’s complex brain microenvironment, such as hypoxia, vasculature-related stromal cells and growth factors support GBM angiogenesis. Patient-derived primary GBM cells were found to participate in blood vessel formation. Exogenous growth factors amplified this effect under normoxia but not under hypoxia suggesting that hypoxic GBM cells are already producing a significant amount of growth factors. Primary GBM cells showed a stronger angiogenic potential when compared to a GBM cell line containing differentiated cells. Under hypoxia, primary GBM cells and umbilical vein endothelial cells were found to strongly co-localize with GBM cells acquiring an endothelial-like behaviour, which has been reported to occur in vivo. These findings demonstrate that our in vitro tumoroid model exhibits biomimetic attributes that may permit its use in studying microenvironment cues of tumor angiogenesis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agavi Stavropoulou Tatla ◽  
Alexander W. Justin ◽  
Colin Watts ◽  
Athina E. Markaki

AbstractGlioblastoma (GBM) angiogenesis is critical for tumor growth and recurrence, making it a compelling therapeutic target. Here, a disease-relevant, vascularized tumoroid in vitro model with stem-like features and stromal surrounds is reported. The model is used to recapitulate how individual components of the GBM’s complex brain microenvironment such as hypoxia, vasculature-related stromal cells and growth factors support GBM angiogenesis. It is scalable, tractable, cost-effective and can be used with biologically-derived or biomimetic matrices. Patient-derived primary GBM cells are found to closely participate in blood vessel formation in contrast to a GBM cell line containing differentiated cells. Exogenous growth factors amplify this effect under normoxia but not at hypoxia suggesting that a significant amount of growth factors is already being produced under hypoxic conditions. Under hypoxia, primary GBM cells strongly co-localize with umbilical vein endothelial cells to form sprouting vascular networks, which has been reported to occur in vivo. These findings demonstrate that our 3D tumoroid in vitro model exhibits biomimetic attributes that may permit its use as a preclinical model in studying microenvironment cues of tumor angiogenesis.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ha-Rim Seo ◽  
Hyo Eun Jeong ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Human body contains many kinds of different type of endothelial cells (EC). However, cellular difference of their angiogenic potential has been hardly understood. We compared in vitro angiogenic potential between arterial EC and venous EC and investigated its underlying molecular mechanisms. Method: Used human aortic endothelial cells (HAEC) which was indicated from arterial EC and human umbilical vein endothelial cells (HUVEC) indicated from venous EC. To explore angiogenic potential in detail, we adopted a novel 3D microfluidic angiogenesis assay system, which closely mimic in vivo angiogenesis. Results: In 3D microfluidic angiogenesis assay system, HAEC demonstrated stronger angiogenic potential compared to HUVEC. HAEC maintained its profound angiogenic property under different biophysical conditions. In mRNA microarray sorted on up- regulated or down-regulated genes, HAEC demonstrated significantly higher expression of gastrulation brain homeobox 2 (GBX2), fibroblast grow factor 2 (FGF2), FGF5 and collagen 8a1. Angiogenesis-related protein assay revealed that HAEC has higher secretion of endogenous FGF2 than HUVEC. HAEC has only up-regulated FGF2 and FGF5 in this part of FGF family. Furthermore, FGF5 expression under vascular endothelial growth factor-A (VEGF-A) stimulation was higher in HAEC compared to HUVEC although VEGF-A augmented FGF5 expression in both HAEC and HUVEC. Those data suggested that FGF5 expression in both HAEC and HUVEC is partially dependent to VEGF-A stimulate. HUVEC and HAEC reduced vascular density after FGF2 and FGF5 siRNA treat. Conclusion: HAEC has stronger angiogenic potential than HUVEC through up-regulation of endogenous FGF2 and FGF5 expression


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 404 ◽  
Author(s):  
Takuya Miyagawa ◽  
Zhi-Yu Chen ◽  
Che-Yi Chang ◽  
Ko-Hua Chen ◽  
Yang-Kao Wang ◽  
...  

Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Hyun Ju Kim ◽  
Mok-Ryeon Ahn

Apigenin has been reported to exert angiogenic and anticancer activities in vitro. The mechanism of inhibition of angiogenesis by apigenin, however, has not been well-established. In this study, we investigated whether apigenin not only inhibited tube formation but also induced apoptosis in human umbilical vein endothelial cells (HUVECs). Furthermore, strong antiangiogenic activity of apigenin was observed in the in vivo assay using chick embryo chorioallantoic membrane (CAM). We also analyzed changes in survival signals and the apoptotic pathway through Western blotting. The results indicate that apigenin exerts its antiangiogenic effects through induction of endothelial apoptosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 478-484 ◽  
Author(s):  
Johannes Keuschnigg ◽  
Tiina Henttinen ◽  
Kaisa Auvinen ◽  
Marika Karikoski ◽  
Marko Salmi ◽  
...  

Abstract Pathologische Anatomie Leiden-endothelium antibody has been used for more than 20 years as a marker for vascular endothelium. Despite its widespread use, the target of this antibody was only recently identified as plasmalemma vesicle–associated protein-1 (PV-1). However, no function has been identified for this molecule. Here we report that activation of human umbilical vein endothelial cells with tumor necrosis factor-α resulted in a remarkable redistribution of PV-1 toward the peripheral areas of the cells. Furthermore, in vitro endpoint transmigration experiments showed that transcellularly migrating lymphocytes are surrounded by rings containing PV-1 and caveolin-1. Moreover, PV-1 associates physically with vimentin. In addition, administration of anti–PV-1 antibody during capillary flow assays resulted in a significant inhibition of lymphocyte transmigration through the endothelial cell layer, whereas rolling and adhesion were unaffected. In vivo blockage of PV-1 by an antibody in acute peritonitis and air pouch model resulted in a significant decrease in the number of migrating leukocytes. Here we thus define leukocyte transendothelial migration as the first known function for PV-1.


RSC Advances ◽  
2019 ◽  
Vol 9 (40) ◽  
pp. 22921-22930 ◽  
Author(s):  
Kongpeng Lv ◽  
Qin Ren ◽  
Xingyan Zhang ◽  
Keda Zhang ◽  
Jia Fei ◽  
...  

Pro-angiogenic activity of astilbin on endothelial cells in vitro and zebrafish in vivo.


Sign in / Sign up

Export Citation Format

Share Document