scholarly journals Mechanistic underpinning of nonuniform collective motions in swarming bacteria

2021 ◽  
Author(s):  
Palash Bera ◽  
Abdul Wasim ◽  
Jagannath Mondal ◽  
Pushpita Ghosh

AbstractSelf-propelled bacteria can exhibit a large variety of non-equilibrium self-organized phenomena. Swarming is one such fascinating dynamical scenario where a number of motile individuals grouped into clusters and move in synchronized flows and vortices. While precedent investigations in rod-like particles confirm that increased aspect-ratio promotes alignment and order, recent experimental studies in bacteria Bacillus subtilis show a non-monotonic dependence of cell-aspect ratio on their swarming motion. Here, by computer simulations of an agent-based model of selfpropelled, mechanically interacting, rod-shaped bacteria in overdamped condition, we explore the collective dynamics of bacterial swarm subjected to a variation of cell-aspect ratio. When modeled with an identical self-propulsion speed across a diverse range of cell aspect ratio, simulations demonstrate that both shorter and longer bacteria exhibit slow dynamics whereas the fastest speed is obtained at an intermediate aspect ratio. Our investigation highlights that the origin of this observed non-monotonic trend of bacterial speed and vorticity with cell-aspect ratio is rooted in the cell-size dependence of motility force. The swarming features remain robust for a wide range of surface density of the cells, whereas asymmetry in friction attributes a distinct effect. Our analysis identifies that at an intermediate aspect ratio, an optimum cell size and motility force promote alignment, which reinforces the mechanical interactions among neighboring cells leading to the overall fastest motion. Mechanistic underpinning of the collective motions reveals that it is a joint venture of the short-range repulsive and the size-dependent motility forces, which determines the characteristics of swarming.

Soft Matter ◽  
2021 ◽  
Author(s):  
Palash Bera ◽  
Abdul Wasim ◽  
Jagannath Mondal ◽  
Pushpita Ghosh

Self-propelled bacteria can exhibit a large variety of non-equilibrium self-organized phenomena. Swarming is one such fascinating dynamical scenario where a number of motile individuals group into dynamical clusters and move...


2021 ◽  
Vol 17 (3) ◽  
pp. e1007957
Author(s):  
Yanbo Lian ◽  
Ali Almasi ◽  
David B. Grayden ◽  
Tatiana Kameneva ◽  
Anthony N. Burkitt ◽  
...  

There are two distinct classes of cells in the primary visual cortex (V1): simple cells and complex cells. One defining feature of complex cells is their spatial phase invariance; they respond strongly to oriented grating stimuli with a preferred orientation but with a wide range of spatial phases. A classical model of complete spatial phase invariance in complex cells is the energy model, in which the responses are the sum of the squared outputs of two linear spatially phase-shifted filters. However, recent experimental studies have shown that complex cells have a diverse range of spatial phase invariance and only a subset can be characterized by the energy model. While several models have been proposed to explain how complex cells could learn to be selective to orientation but invariant to spatial phase, most existing models overlook many biologically important details. We propose a biologically plausible model for complex cells that learns to pool inputs from simple cells based on the presentation of natural scene stimuli. The model is a three-layer network with rate-based neurons that describes the activities of LGN cells (layer 1), V1 simple cells (layer 2), and V1 complex cells (layer 3). The first two layers implement a recently proposed simple cell model that is biologically plausible and accounts for many experimental phenomena. The neural dynamics of the complex cells is modeled as the integration of simple cells inputs along with response normalization. Connections between LGN and simple cells are learned using Hebbian and anti-Hebbian plasticity. Connections between simple and complex cells are learned using a modified version of the Bienenstock, Cooper, and Munro (BCM) rule. Our results demonstrate that the learning rule can describe a diversity of complex cells, similar to those observed experimentally.


What did it mean to be a man in Scotland over the past nine centuries? Scotland, with its stereotypes of the kilted warrior and the industrial ‘hard man’, has long been characterised in masculine terms, but there has been little historical exploration of masculinity in a wider context. This interdisciplinary collection examines a diverse range of the multiple and changing forms of masculinities from the late eleventh to the late twentieth century, exploring the ways in which Scottish society through the ages defined expectations for men and their behaviour. How men reacted to those expectations is examined through sources such as documentary materials, medieval seals, romances, poetry, begging letters, police reports and court records, charity records, oral histories and personal correspondence. Focusing upon the wide range of activities and roles undertaken by men – work, fatherhood and play, violence and war, sex and commerce – the book also illustrates the range of masculinities that affected or were internalised by men. Together, the chapters illustrate some of the ways Scotland’s gender expectations have changed over the centuries and how, more generally, masculinities have informed the path of Scottish history


This book opens a cross-regional dialogue and shifts the Eurocentric discussion on diversity and integration to a more inclusive engagement with South America in private international law issues. It promotes a contemporary vision of private international law as a discipline enabling legal interconnectivity, with the potential to transcend its disciplinary boundaries to further promote the reality of cross-border integration, with its focus on the ever-increasing cross-border mobility of individuals. Private international law embraces legal diversity and pluralism. Different legal traditions continue to meet, interact and integrate in different forms, at the national, regional and international levels. Different systems of substantive law couple with divergent systems of private international law (designed to accommodate the former in cross-border situations). This complex legal landscape impacts individuals and families in cross-border scenarios, and international commerce broadly conceived. Private international law methodologies and techniques offer means for the coordination of this constellation of legal orders and value systems in cross-border situations. Bringing together world-renowned academics and experienced private international lawyers from a wide range of jurisdictions in Europe and South America, this edited collection focuses on the connective capabilities of private international law in bridging and balancing legal diversity as a corollary for the development of integration. The book provides in-depth analysis of the role of private international law in dealing with legal diversity across a diverse range of topics and jurisdictions.


2019 ◽  
Author(s):  
Keren Gueta ◽  
Yossi Harel-Fisch ◽  
Sophie D. Walsh

BACKGROUND Despite the low utilization rates of substance use and related disorders services, and the ability of internet-based interventions for substance use and related disorders (IBIS) to address challenges related to service engagement, limited attention has been placed on the processes for the accommodation of these interventions to diverse cultural settings. OBJECTIVE The purpose of this study was to develop a conceptual framework for the cultural accommodation of IBIS across populations, settings, and countries. METHODS A pilot study of cultural accommodation of an existing internet intervention for alcohol use (Down Your Drink (DYD)), focus groups and daily online surveys of prospective consumers (N=24) and interviews with experts (N=7) in the substance abuse treatment field were conducted. RESULTS Thematic analysis revealed a wide range of themes identified as needing to be addressed in the process of DYD accommodation. It also emphasized that accommodation needs to incorporate both technical and contents themes, shaped by both the general Israeli cultural as well as by the specific Israeli drinking subculture. A combined mixed emic–etic theoretical approach incorporating the pilot findings together with a scoping literature review was employed to develop a framework for cultural accommodation of IBIS. A comprehensive framework for cultural accommodation of IBIS is introduced consisting of five chronological stages of IBIS accommodation and four dimensions of accommodation. CONCLUSIONS The proposed framework can serve as a guide for the cultural accommodation of existing IBIS across a diverse range of cultural and geographical settings thus augmenting the ecological validity of IBIS and reducing health disparities worldwide.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 421
Author(s):  
Dariusz Puchala ◽  
Kamil Stokfiszewski ◽  
Mykhaylo Yatsymirskyy

In this paper, the authors analyze in more details an image encryption scheme, proposed by the authors in their earlier work, which preserves input image statistics and can be used in connection with the JPEG compression standard. The image encryption process takes advantage of fast linear transforms parametrized with private keys and is carried out prior to the compression stage in a way that does not alter those statistical characteristics of the input image that are crucial from the point of view of the subsequent compression. This feature makes the encryption process transparent to the compression stage and enables the JPEG algorithm to maintain its full compression capabilities even though it operates on the encrypted image data. The main advantage of the considered approach is the fact that the JPEG algorithm can be used without any modifications as a part of the encrypt-then-compress image processing framework. The paper includes a detailed mathematical model of the examined scheme allowing for theoretical analysis of the impact of the image encryption step on the effectiveness of the compression process. The combinatorial and statistical analysis of the encryption process is also included and it allows to evaluate its cryptographic strength. In addition, the paper considers several practical use-case scenarios with different characteristics of the compression and encryption stages. The final part of the paper contains the additional results of the experimental studies regarding general effectiveness of the presented scheme. The results show that for a wide range of compression ratios the considered scheme performs comparably to the JPEG algorithm alone, that is, without the encryption stage, in terms of the quality measures of reconstructed images. Moreover, the results of statistical analysis as well as those obtained with generally approved quality measures of image cryptographic systems, prove high strength and efficiency of the scheme’s encryption stage.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Cruz ◽  
Klas Hjort

AbstractThe ability to focus, separate and concentrate specific targets in a fluid is essential for the analysis of complex samples such as biological fluids, where a myriad of different particles may be present. Inertial focusing is a very promising technology for such tasks, and specially a recently presented variant, inertial focusing in High Aspect Ratio Curved systems (HARC systems), where the systems are easily engineered and focus the targets together in a stable position over a wide range of particle sizes and flow rates. However, although convenient for laser interrogation and concentration, by focusing all particles together, HARC systems lose an essential feature of inertial focusing: the possibility of particle separation by size. Within this work, we report that HARC systems not only do have the capacity to separate particles but can do so with extremely high resolution, which we demonstrate for particles with a size difference down to 80 nm. In addition to the concept for particle separation, a model considering the main flow, the secondary flow and a simplified expression for the lift force in HARC microchannels was developed and proven accurate for the prediction of the performance of the systems. The concept was also demonstrated experimentally with three different sub-micron particles (0.79, 0.92 and 1.0 µm in diameter) in silicon-glass microchannels, where the resolution in the separation could be modulated by the radius of the channel. With the capacity to focus sub-micron particles and to separate them with high resolution, we believe that inertial focusing in HARC systems is a technology with the potential to facilitate the analysis of complex fluid samples containing bioparticles like bacteria, viruses or eukaryotic organelles.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


Sign in / Sign up

Export Citation Format

Share Document