scholarly journals The evolution of germ-soma specialization under different genetic and environmental effects

2021 ◽  
Author(s):  
Denis Tverskoi ◽  
Sergey Gavrilets

Division of labor exists at different levels of biological organization - from cell colonies to human societies. One of the simplest examples of the division of labor in multicellular organisms is germ-soma specialization, which plays a key role in the evolution of organismal complexity. Here we formulate and study a general mathematical model exploring the emergence of germ-soma specialization in colonies of cells. We consider a finite population of colonies competing for resources. Colonies are of the same size and are composed by asexually reproducing haploid cells. Each cell can contribute to activity and fecundity of the colony, these contributions are traded-off. We assume that all cells within a colony are genetically identical but gene expression is affected by variation in the microenvironment experienced by individual cells. Through analytical theory and evolutionary agent-based modeling we show that the shape of the trade-off relation between somatic and reproductive functions, the type and extent of variation in within-colony microenvironment, and, in some cases, the number of genes involved, are important predictors of the extent of germ-soma specialization. Specifically, increasing convexity of the trade-off relation, the number of different environmental gradients acting within a colony, and the number of genes (in the case of random microenvironmental effects) promote the emergence of germ-soma specialization. Overall our results contribute towards a better understanding of the role of genetic, environmental, and microenvironmental factors in the evolution of germ-soma specialization.

2020 ◽  
Author(s):  
Guilhem Doulcier ◽  
Katrin Hammerschmidt ◽  
Pierrick Bourrat

AbstractReproductive division of labor has been proposed to play a key role for evolutionary transitions in individuality (ETIs). This chapter provides a guide to a theoretical model that addresses the role of a tradeoff between life-history traits in selecting for a reproductive division of labor during the transition from unicellular to multicellular organisms. In particular, it focuses on the five keys assumptions of the model, namely (1) fitness is viability times fecundity; (2) collective traits are linear functions of their cellular counterparts; (3) there is a tradeoff between cell viability and fecundity; (4) cell contribution to the collective is optimal; and (5) there is an initial reproductive cost in large collectives. Thereafter the chapter contrasts two interpretations of the model in the context of ETIs. Originally, the model was interpreted as showing that during the transition to multicellularity the fitness of the lower-level (the cells) is “transferred” to the higher level (the collective). Despite its apparent intuitiveness, fitness transfer may obscure actual mechanisms in metaphorical language. Thus, an alternative and more conservative interpretation of the model that focuses on cell traits and the evolutionary constraints that links them is advocated. In addition, it allows for pursuing subsequent questions, such as the evolution of development.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


2019 ◽  
Vol 56 (3) ◽  
pp. 361-378 ◽  
Author(s):  
Andreas Lanz ◽  
Jacob Goldenberg ◽  
Daniel Shapira ◽  
Florian Stahl

This article addresses seeding policies in user-generated content networks by challenging the role of influencers in a setting of unpaid endorsements. On such platforms, the content is generated by individuals and firms interested in self-promotion. The authors use data from a worldwide leading music platform to study unknown music creators who aim to increase exposure of their content by expanding their follower base through directing outbound activities to other users. The authors find that the responsiveness of seeding targets strongly declines with status difference; thus, unknown music creators (the majority) do not generally benefit at all from seeding influencers. Instead, they should gradually build their status by targeting low-status users rather than attempt to “jump” by targeting high-status ones. This research extends the seeding literature by introducing the concept of risk to dissemination dynamics in online communications, showing that unknown music creators do not seed specific status levels but rather choose a portfolio of seeding targets while solving a risk versus return trade-off. The authors discuss various managerial implications for optimal seeding in user-generated content networks.


2021 ◽  
Vol 22 (11) ◽  
pp. 5918
Author(s):  
Paweł Kordowitzki ◽  
Gabriela Sokołowska ◽  
Marta Wasielak-Politowska ◽  
Agnieszka Skowronska ◽  
Mariusz T. Skowronski

The oocyte is the major determinant of embryo developmental competence in all mammalian species. Although fundamental advances have been generated in the field of reproductive medicine and assisted reproductive technologies in the past three decades, researchers and clinicians are still trying to elucidate molecular factors and pathways, which could be pivotal for the oocyte’s developmental competence. The cell-to-cell and cell-to-matrix communications are crucial not only for oocytes but also for multicellular organisms in general. This latter mentioned communication is among others possibly due to the Connexin and Pannexin families of large-pore forming channels. Pannexins belong to a protein group of ATP-release channels, therefore of high importance for the oocyte due to its requirements of high energy supply. An increasing body of studies on Pannexins provided evidence that these channels not only play a role during physiological processes of an oocyte but also during pathological circumstances which could lead to the development of diseases or infertility. Connexins are proteins that form membrane channels and gap-junctions, and more precisely, these proteins enable the exchange of some ions and molecules, and therefore they do play a fundamental role in the communication between the oocyte and accompanying cells. Herein, the role of Pannexins and Connexins for the processes of oogenesis, folliculogenesis, oocyte maturation and fertilization will be discussed and, at the end of this review, Pannexin and Connexin related pathologies and their impact on the developmental competence of oocytes will be provided.


2021 ◽  
Vol 9 (1) ◽  
pp. 148
Author(s):  
Marius Bredon ◽  
Elisabeth Depuydt ◽  
Lucas Brisson ◽  
Laurent Moulin ◽  
Ciriac Charles ◽  
...  

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.


Urban Studies ◽  
2021 ◽  
pp. 004209802199178
Author(s):  
Nan Liu

In housing markets there is a trade-off between selling time and selling price, with pricing strategy being the balancing act between the two. Motivated by the Home Report scheme in Scotland, this paper investigates the role of information symmetry played in such a trade-off. Empirically, this study tests if sellers’ pricing strategy changes when more information becomes available and whether this, in turn, affects the trade-off between the selling price and selling time. Using housing transaction data of North-East Scotland between 1998Q2 and 2018Q2, the findings show that asking price has converged to the predicted price of the property since the introduction of the Home Report. While information transparency reduces the effect of ‘overpricing’ on selling time, there is little evidence to show that it reduces the impact of pricing strategy on the final selling price in the sealed-bid context.


Sign in / Sign up

Export Citation Format

Share Document