scholarly journals Oxygen depletion and nitric oxide stimulate type IV MSHA pilus retraction in Vibrio cholerae via activation of the phosphodiesterase CdpA

2021 ◽  
Author(s):  
Hannah Q Hughes ◽  
Kyle A Floyd ◽  
Sajjad Hossain ◽  
Sweta Anantharaman ◽  
David T Kysela ◽  
...  

Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. Dynamic extension and retraction of pili is often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To study this question, we use the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we find that V. cholerae cells retract MSHA pili and detach from a surface in microaerobic conditions. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP (c-di-GMP) under microaerobic conditions to induce MSHA pilus retraction. CdpA contains a putative NO-sensing NosP domain, and we demonstrate that nitric oxide (NO) is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that microaerobic conditions result in endogenous production of NO (or an NO-like molecule) in V. cholerae. Together, these results describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. More broadly, these results show how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.

2021 ◽  
Vol 118 (47) ◽  
pp. e2102780118
Author(s):  
Jennifer L. Chlebek ◽  
Rémi Denise ◽  
Lisa Craig ◽  
Ankur B. Dalia

Type IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor, and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants likely diminish pilin–pilin interactions within the filament to produce less-stable pili. One mutation adds a bulky residue to α1C, a universally conserved feature of T4P. We found that inserting a bulky residue into α1C of the retraction motor–dependent Acinetobacter baylyi competence T4P enhances motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor–independent, V. cholerae toxin-coregulated T4P stabilizes the filament and diminishes pilus retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor–independent T4P, gram-positive Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor–dependent T4P. Together, our data demonstrate that motor-independent retraction relies, in part, on the inherent instability of the pilus filament, which may be a conserved feature of diverse T4Fs. This provides evidence for a long-standing yet previously untested model in which pili retract in the absence of a motor by spontaneous depolymerization.


2021 ◽  
Author(s):  
Jennifer L. Chlebek ◽  
Triana N. Dalia ◽  
Nicolas Biais ◽  
Ankur B. Dalia

ABSTRACTBacteria utilize dynamic appendages called type IV pili (T4P) to interact with their environment and mediate a wide variety of functions. Pilus extension is mediated by an extension ATPase motor, commonly called PilB, in all T4P. Pilus retraction, however, can either occur with the aid of an ATPase motor, or in the absence of a retraction motor. While much effort has been devoted to studying motor-dependent retraction, the mechanism and regulation of motor-independent retraction remains poorly characterized. We have previously demonstrated that Vibrio cholerae competence T4P undergo motor-independent retraction in the absence of the dedicated retraction ATPases PilT and PilU. Here, we utilize this model system to characterize the factors that influence motor-independent retraction. We find that freshly extended pili frequently undergo motor-independent retraction, but if these pili fail to retract immediately, they remain statically extended on the cell surface. Importantly, we show that these static pili can still undergo motor-dependent retraction via tightly regulated ectopic expression of PilT, suggesting that these T4P are not broken, but simply cannot undergo motor-independent retraction. Through additional genetic and biophysical characterization of pili, we suggest that pilus filaments undergo conformational changes during dynamic extension and retraction. We propose that only some conformations, like those adopted by freshly extended pili, are capable of undergoing motor-independent retraction. Together, these data highlight the versatile mechanisms that regulate T4P dynamic activity and provide additional support for the long-standing hypothesis that motor-independent retraction occurs via spontaneous depolymerization.SIGNIFICANCEExtracellular pilus fibers are critical to the virulence and persistence of many pathogenic bacteria. A crucial function for most pili is the dynamic ability to extend and retract from the cell surface. Inhibiting this dynamic pilus activity represents an attractive approach for therapeutic interventions, however, a detailed mechanistic understanding of this process is currently lacking. Here, we use the competence pilus of Vibrio cholerae to study how pili retract in the absence of dedicated retraction motors. Our results reveal a novel regulatory mechanism of pilus retraction that is an inherent property of the external pilus filament. Thus, understanding the conformational changes that pili adopt under different conditions may be critical for the development of novel therapeutics that aim to target the dynamic activity of these structures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Triana N. Dalia ◽  
Jennifer L. Chlebek ◽  
Ankur B. Dalia

Abstract The ability to express genes ectopically in bacteria is essential for diverse academic and industrial applications. Two major considerations when utilizing regulated promoter systems for ectopic gene expression are (1) the ability to titrate gene expression by addition of an exogenous inducer and (2) the leakiness of the promoter element in the absence of the inducer. Here, we describe a modular chromosomally integrated platform for ectopic gene expression in Vibrio cholerae. We compare the broadly used promoter elements Ptac and PBAD to versions that have an additional theophylline-responsive riboswitch (Ptac-riboswitch and PBAD-riboswitch). These constructs all exhibited unimodal titratable induction of gene expression, however, max induction varied with Ptac > PBAD > PBAD-riboswitch > Ptac-riboswitch. We also developed a sensitive reporter system to quantify promoter leakiness and show that leakiness for Ptac > Ptac-riboswitch > PBAD; while the newly developed PBAD-riboswitch exhibited no detectable leakiness. We demonstrate the utility of the tightly inducible PBAD-riboswitch construct using the dynamic activity of type IV competence pili in V. cholerae as a model system. The modular chromosomally integrated toolkit for ectopic gene expression described here should be valuable for the genetic study of V. cholerae and could be adapted for use in other species.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Arturo Levican ◽  
Ignacio Ramos-Tapia ◽  
Isabel Briceño ◽  
Francisco Guerra ◽  
Benjamin Mena ◽  
...  

Campylobacter spp., especially C. jejuni, are recognized worldwide as the bacterial species that most commonly cause food-related diarrhea. C. jejuni possesses many different virulence factors, has the ability to survive in different reservoirs, and has shown among isolates the emergence of Antimicrobial Resistance (AMR). Genome association analyses of this bacterial pathogen have contributed to a better understanding of its pathogenic and AMR associated determinants. However, the epidemiological information of these bacteria in Latin American countries is scarce and no genomic information is available in public databases from isolates in these countries. Considering this, the present study is aimed to describe the genomic traits from representative Campylobacter spp. strains recovered from faecal samples of patients with acute diarrhoea from Valparaíso, Chile. Campylobacter spp. was detected from the faeces of 28 (8%) out of 350 patients with acute diarrhoea, mainly from young adults and children, and 26 (93%) of the isolates corresponded to C. jejuni. 63% of the isolates were resistant to ciprofloxacin, 25.9% to tetracycline, and 3.5% to erythromycin. Three isolates were selected for WGS on the basis of their flaA-RFLP genotype. They belonged to the multilocus sequence typing (MLST) clonal clomplex (CC) 21(PUCV-1), CC-48 (PUCV-3), and CC-353 (PUCV-2) and presented several putative virulence genes, including the Type IV and Type VI Secretion Systems, as well as AMR-associated genes in agreement with their susceptibility pattern. On the basis of the wgMLST, they were linked to strains from poultry and ruminants. These are the first genomes of Chilean C. jejuni isolates available in public databases and they provide relevant information about the C. jejuni isolates associated with human infection in this country.


2016 ◽  
Vol 113 (14) ◽  
pp. E2066-E2072 ◽  
Author(s):  
Knut Drescher ◽  
Jörn Dunkel ◽  
Carey D. Nadell ◽  
Sven van Teeffelen ◽  
Ivan Grnja ◽  
...  

Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development.


2008 ◽  
Vol 191 (4) ◽  
pp. 1248-1257 ◽  
Author(s):  
Yun Wu ◽  
F. Wayne Outten

ABSTRACT Biofilm formation is a complex developmental process regulated by multiple environmental signals. In addition to other nutrients, the transition metal iron can also regulate biofilm formation. Iron-dependent regulation of biofilm formation varies by bacterial species, and the exact regulatory pathways that control iron-dependent biofilm formation are often unknown or only partially characterized. To address this gap in our knowledge, we examined the role of iron availability in regulating biofilm formation in Escherichia coli. The results indicate that biofilm formation is repressed under low-iron conditions in E. coli. Furthermore, a key iron regulator, IscR, controls biofilm formation in response to changes in cellular Fe-S homeostasis. IscR regulates the FimE recombinase to control expression of type I fimbriae in E. coli. We propose that iron-dependent regulation of FimE via IscR leads to decreased surface attachment and biofilm dispersal under iron-limiting conditions.


2021 ◽  
Author(s):  
Trinh Lam ◽  
Courtney K. Ellison ◽  
Ankur B. Dalia ◽  
David T. Eddington ◽  
Donald A. Morrison

SUMMARYThe competence pili of transformable Gram-positive species form a subset of the diverse and widespread class of extracellular filamentous organelles known as type IV pili (T4P). In Gram-negative bacteria, T4P act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether T4P in Gram-positive species exhibit this same dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) passively form transient cavities in the cell wall to facilitate DNA passage, (2) act as static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via their dynamic activity. Here, using a recently described pilus labeling approach, we demonstrate that pneumococcal competence pili are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling ComGC with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results indicate that Gram-positive type IV competence pili are dynamic and retractile structures that play an active role in DNA uptake.Short summaryCompetent pneumococci kill non-competent cells on contact. Retractable DNA-binding fibers in the class of type IV pili may provide a key tool for retrieving DNA segments from cell wreckage for internalization and recombination.


2003 ◽  
Vol 185 (18) ◽  
pp. 5408-5418 ◽  
Author(s):  
Rebecca S. Wiesner ◽  
David R. Hendrixson ◽  
Victor J. DiRita

ABSTRACT The human pathogen Campylobacter jejuni is one of more than 40 naturally competent bacterial species able to import macromolecular DNA from the environment and incorporate it into their genomes. However, in C. jejuni little is known about the genes involved in this process. We used random transposon mutagenesis to identify genes that are required for the transformation of this organism. We isolated mutants with insertions in 11 different genes; most of the mutants are affected in the DNA uptake stage of transformation, whereas two mutants are affected in steps subsequent to DNA uptake, such as recombination into the chromosome or in DNA transport across the inner membrane. Several of these genes encode proteins homologous to those involved in type II secretion systems, biogenesis of type IV pili, and competence for natural transformation in gram-positive and gram-negative species. Other genes identified in our screen encode proteins unique to C. jejuni or are homologous to proteins that have not been shown to play a role in the transformation in other bacteria.


2005 ◽  
Vol 73 (9) ◽  
pp. 5873-5882 ◽  
Author(s):  
Anna D. Tischler ◽  
Andrew Camilli

ABSTRACT The cyclic dinucleotide second messenger cyclic diguanylate (c-diGMP) has been implicated in regulation of cell surface properties in several bacterial species, including Vibrio cholerae. Expression of genes required for V. cholerae biofilm formation is activated by an increased intracellular c-diGMP concentration. The response regulator VieA, which contains a domain responsible for degradation of c-diGMP, is required to maintain a low concentration of c-diGMP and repress biofilm formation. The VieSAB three-component signal transduction system was, however, originally identified as a regulator of ctxAB, the genes encoding cholera toxin (CT). Here we show that the c-diGMP phosphodiesterase activity of VieA is required to enhance CT production. This regulation occurred at the transcriptional level, and ectopically altering the c-diGMP concentration by expression of diguanylate cyclase or phosphodiesterase enzymes also affected ctxAB transcription. The c-diGMP phosphodiesterase activity of VieA was also required for maximal transcription toxT but did not influence the activity of ToxR or expression of TcpP. Finally, a single amino acid substitution in VieA that increases the intracellular c-diGMP concentration led to attenuation in the infant mouse model of cholera. Since virulence genes including toxT and ctxA are repressed by a high concentration of c-diGMP, while biofilm genes are activated, we suggest that c-diGMP signaling is important for the transition of V. cholerae from the environment to the host.


Author(s):  
Jennifer L. Chlebek ◽  
Triana N. Dalia ◽  
Nicolas Biais ◽  
Ankur B. Dalia

Bacteria utilize dynamic appendages called type IV pili (T4P) to interact with their environment and mediate a wide variety of functions. Pilus extension is mediated by an extension ATPase motor, commonly called PilB, in all T4P. Pilus retraction, however, can either occur with the aid of an ATPase motor, or in the absence of a retraction motor. While much effort has been devoted to studying motor-dependent retraction, the mechanism and regulation of motor-independent retraction remains poorly characterized. We have previously demonstrated that Vibrio cholerae competence T4P undergo motor-independent retraction in the absence of the dedicated retraction ATPases PilT and PilU. Here, we utilize this model system to characterize the factors that influence motor-independent retraction. We find that freshly extended pili frequently undergo motor-independent retraction, but if these pili fail to retract immediately, they remain statically extended on the cell surface. Importantly, we show that these static pili can still undergo motor-dependent retraction via tightly regulated ectopic expression of PilT, suggesting that these T4P are not broken, but simply cannot undergo motor-independent retraction. Through additional genetic and biophysical characterization of pili, we suggest that pilus filaments undergo conformational changes during dynamic extension and retraction. We propose that only some conformations, like those adopted by freshly extended pili, are capable of undergoing motor-independent retraction. Together, these data highlight the versatile mechanisms that regulate T4P dynamic activity and provide additional support for the long-standing hypothesis that motor-independent retraction occurs via spontaneous depolymerization. IMPORTANCE Extracellular pilus fibers are critical to the virulence and persistence of many pathogenic bacteria. A crucial function for most pili is the dynamic ability to extend and retract from the cell surface. Inhibiting this dynamic pilus activity represents an attractive approach for therapeutic interventions, however, a detailed mechanistic understanding of this process is currently lacking. Here, we use the competence pilus of Vibrio cholerae to study how pili retract in the absence of dedicated retraction motors. Our results reveal a novel regulatory mechanism of pilus retraction that is an inherent property of the pilus filament. Thus, understanding the conformational changes that pili adopt under different conditions may be critical for the development of novel therapeutics that aim to target the dynamic activity of these structures.


Sign in / Sign up

Export Citation Format

Share Document