scholarly journals Insertions in SARS-CoV-2 genome caused by template switch and duplications give rise to new variants of potential concern

2021 ◽  
Author(s):  
Sofiya K Garushyants ◽  
Igor B Rogozin ◽  
Eugene V. Koonin

The appearance of multiple new SARS-CoV-2 variants during the winter of 2020-2021 is a matter of grave concern. Some of these new variants, such as B.1.351 and B.1.1.17, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the COVID-19 pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on point nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the spike protein is thought to be a determinant of SARS-CoV-2 virulence and other inserts might have contributed to coronavirus pathogenicity as well. Here, we investigate insertions in SARS-CoV-2 genomes and identify 141 unique inserts of different lengths. We present evidence that these inserts reflect actual virus variance rather than sequencing errors. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. We show that inserts in the Spike glycoprotein can affect its antigenic properties and thus have to be monitored. At least, two inserts in the N-terminal domain of the Spike (ins246DSWG and ins15ATLRI) that were first detected in January 2021 are predicted to lead to escape from neutralizing antibodies whereas other inserts might result in escape from T-cell immunity.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sofya K. Garushyants ◽  
Igor B. Rogozin ◽  
Eugene V. Koonin

AbstractThe appearance of multiple new SARS-CoV-2 variants during the COVID-19 pandemic is a matter of grave concern. Some of these variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the Spike (S) protein is thought to be a determinant of SARS-CoV-2 virulence. Here, we identify 346 unique inserts of different lengths in SARS-CoV-2 genomes and present evidence that these inserts reflect actual virus variance rather than sequencing artifacts. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. At least three inserts in the N-terminal domain of the S protein are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity. Thus, inserts in the S protein can affect its antigenic properties and merit monitoring.


2010 ◽  
Vol 192 (14) ◽  
pp. 3645-3653 ◽  
Author(s):  
Thomas R. Ioerger ◽  
Yicheng Feng ◽  
Krishna Ganesula ◽  
Xiaohua Chen ◽  
Karen M. Dobos ◽  
...  

ABSTRACT The publication of the complete genome sequence for Mycobacterium tuberculosis H37Rv in 1998 has had a great impact on the research community. Nonetheless, it is suspected that genetic differences have arisen in stocks of H37Rv that are maintained in different laboratories. In order to assess the consistency of the genome sequences among H37Rv strains in use and the extent to which they have diverged from the original strain sequenced, we carried out whole-genome sequencing on six strains of H37Rv from different laboratories. Polymorphisms at 73 sites were observed, which were shared among the lab strains, though 72 of these were also shared with H37Ra and are likely to be due to sequencing errors in the original H37Rv reference sequence. An updated H37Rv genome sequence should be valuable to the tuberculosis research community as well as the broader microbial research community. In addition, several polymorphisms unique to individual strains and several shared polymorphisms were identified and shown to be consistent with the known provenance of these strains. Aside from nucleotide substitutions and insertion/deletions, multiple IS6110 transposition events were observed, supporting the theory that they play a significant role in plasticity of the M. tuberculosis genome. This genome-wide catalog of genetic differences can help explain any phenotypic differences that might be found, including a frameshift mutation in the mycocerosic acid synthase gene which causes two of the strains to be deficient in biosynthesis of the surface glycolipid phthiocerol dimycocerosate (PDIM). The resequencing of these six lab strains represents a fortuitous “in vitro evolution” experiment that demonstrates how the M. tuberculosis genome continues to evolve even in a controlled environment.


2020 ◽  
Vol 117 (38) ◽  
pp. 23652-23662 ◽  
Author(s):  
Bethany Dearlove ◽  
Eric Lewitus ◽  
Hongjun Bai ◽  
Yifan Li ◽  
Daniel B. Reeves ◽  
...  

The magnitude of the COVID-19 pandemic underscores the urgency for a safe and effective vaccine. Many vaccine candidates focus on the Spike protein, as it is targeted by neutralizing antibodies and plays a key role in viral entry. Here we investigate the diversity seen in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences and compare it to the sequence on which most vaccine candidates are based. Using 18,514 sequences, we perform phylogenetic, population genetics, and structural bioinformatics analyses. We find limited diversity across SARS-CoV-2 genomes: Only 11 sites show polymorphisms in >5% of sequences; yet two mutations, including the D614G mutation in Spike, have already become consensus. Because SARS-CoV-2 is being transmitted more rapidly than it evolves, the viral population is becoming more homogeneous, with a median of seven nucleotide substitutions between genomes. There is evidence of purifying selection but little evidence of diversifying selection, with substitution rates comparable across structural versus nonstructural genes. Finally, the Wuhan-Hu-1 reference sequence for the Spike protein, which is the basis for different vaccine candidates, matches optimized vaccine inserts, being identical to an ancestral sequence and one mutation away from the consensus. While the rapid spread of the D614G mutation warrants further study, our results indicate that drift and bottleneck events can explain the minimal diversity found among SARS-CoV-2 sequences. These findings suggest that a single vaccine candidate should be efficacious against currently circulating lineages.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mikail Dogan ◽  
Lina Kozhaya ◽  
Lindsey Placek ◽  
Courtney Gunter ◽  
Mesut Yigit ◽  
...  

AbstractDevelopment of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 144
Author(s):  
Daniele Focosi ◽  
Marco Tuccori ◽  
Massimo Franchini

Effective treatments specific for COVID-19 are still lacking. In the setting of passive immunotherapies based on neutralizing antibodies (nAbs), randomized controlled trials of COVID-19 convalescent plasma (CCP) anti-SARS-CoV-2 Spike protein monoclonal antibodies (mAb), which have been granted emergency use authorization, have suggested benefit in early disease course (less than 72 hours from symptoms and seronegative). Meanwhile, polyclonal immunoglobulins (i.e., hyperimmune serum), derived either from CCP donations or from animals immunized with SARS-CoV-2 antigens, are likely to become the next nAb-derived candidate. We here discuss the pros and cons of hyperimmune serum versus CCP and mAb, and summarize the ongoing clinical trials of COVID-19 hyperimmune sera.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sten Ilmjärv ◽  
Fabien Abdul ◽  
Silvia Acosta-Gutiérrez ◽  
Carolina Estarellas ◽  
Ioannis Galdadas ◽  
...  

AbstractThe D614G mutation in the Spike protein of the SARS-CoV-2 has effectively replaced the early pandemic-causing variant. Using pseudotyped lentivectors, we confirmed that the aspartate replacement by glycine in position 614 is markedly more infectious. Molecular modelling suggests that the G614 mutation facilitates transition towards an open state of the Spike protein. To explain the epidemiological success of D614G, we analysed the evolution of 27,086 high-quality SARS-CoV-2 genome sequences from GISAID. We observed striking coevolution of D614G with the P323L mutation in the viral polymerase. Importantly, the exclusive presence of G614 or L323 did not become epidemiologically relevant. In contrast, the combination of the two mutations gave rise to a viral G/L variant that has all but replaced the initial D/P variant. Our results suggest that the P323L mutation, located in the interface domain of the RNA-dependent RNA polymerase, is a necessary alteration that led to the epidemiological success of the present variant of SARS-CoV-2. However, we did not observe a significant correlation between reported COVID-19 mortality in different countries and the prevalence of the Wuhan versus G/L variant. Nevertheless, when comparing the speed of emergence and the ultimate predominance in individual countries, it is clear that the G/L variant displays major epidemiological supremacy over the original variant.


2021 ◽  
Vol 22 (4) ◽  
pp. 1695
Author(s):  
Bruno O. Villoutreix ◽  
Vincent Calvez ◽  
Anne-Geneviève Marcelin ◽  
Abdel-Majid Khatib

SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike–ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure–function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.


2021 ◽  
Vol 21 (11) ◽  
pp. 5399-5407
Author(s):  
Evani Ferreira Cardoso ◽  
Thaís Forest Giacomello ◽  
Leandro Leal Rocha de Oliveira ◽  
Tiago Arouche da Silva ◽  
Antonio Maia de Jesus Chaves Neto ◽  
...  

For the development of drugs that treat SARS-CoV-2, the fastest way is to find potential molecules from drugs already on the market. Unfortunately, there is currently no specific drug or treatment for COVID-19. Among all structural proteins in SARS-CoV, the spike protein is the main antigenic component responsible for inducing host immune responses, neutralizing antibodies, and/or protecting immunity against virus infection. Molecular docking is a technique used to predict whether a molecule will bind to another. It is usually a protein to another or a protein to a binding compound. Natural products are potential binders in several studies involving coronavirus. The structure of the ligand plays a fundamental role in its biological properties. The nuclear magnetic resonance technique is one of the most powerful tools for the structural determination of ligands from the origin of natural products. Nowadays, molecular modeling is an important accessory tool to experimentally got nuclear magnetic resonance data. In the present work, molecular docking studies aimed is to investigate the limiting affinities of trans-dehydrocrotonin molecule and to identify the main amino acid residues that could play a fundamental role in their mechanism of action of the SARS-CoV spike protein. Another aim of this work is all about to evaluate 10 hybrid functionalities, along with three base pairs using computational programs to discover which ones are more reliable with the experimental result the best computational method to study organic compounds. We compared the results between the mean absolute deviation (MAD) and root-mean-square deviation (RMSD) of the molecules, and the smallest number between them was the best result. The positions assumed by the ligands in the active site of the spike glycoprotein allow assuming associations with different local amino acids.


Sign in / Sign up

Export Citation Format

Share Document