scholarly journals Differential role of spinal and supraspinal processing of proprioceptive information in mouse locomotion

2021 ◽  
Author(s):  
Alessandro Santuz ◽  
Olivier Laflamme ◽  
Turgay Akay

AbstractSafe locomotion relies on information from proprioceptors, sensory organs that communicate the position of body parts to the central nervous system. Proprioceptive circuits in the spinal cord are known to robustly regulate locomotion in challenging environments. The role of ascending pathways conveying proprioceptive information to the brain remains less clear. Through mouse genetic studies and in vivo electrophysiology, here we show that the systemic removal of proprioceptors leaves the animals in a constantly perturbed state, similar to that observed during mechanically perturbed locomotion in wild type. Yet, after surgical interruption of the ascending proprioceptive pathways, wild-type mice lose the ability to cope with external perturbations while walking. Our findings provide direct evidence of a pivotal role for ascending proprioceptive information in achieving safe locomotion.

2018 ◽  
Vol 315 (4) ◽  
pp. G433-G442 ◽  
Author(s):  
Kayte A. Jenkin ◽  
Peijian He ◽  
C. Chris Yun

Lysophosphatidic acid (LPA) is a bioactive lipid molecule, which regulates a broad range of pathophysiological processes. Recent studies have demonstrated that LPA modulates electrolyte flux in the intestine, and its potential as an antidiarrheal agent has been suggested. Of six LPA receptors, LPA5 is highly expressed in the intestine. Recent studies by our group have demonstrated activation of Na+/H+ exchanger 3 (NHE3) by LPA5. However, much of what has been elucidated was achieved using colonic cell lines that were transfected to express LPA5. In the current study, we engineered a mouse that lacks LPA5 in intestinal epithelial cells, Lpar5ΔIEC, and investigated the role of LPA5 in NHE3 regulation and fluid absorption in vivo. The intestine of Lpar5ΔIEC mice appeared morphologically normal, and the stool frequency and fecal water content were unchanged compared with wild-type mice. Basal rates of NHE3 activity and fluid absorption and total NHE3 expression were not changed in Lpar5ΔIEC mice. However, LPA did not activate NHE3 activity or fluid absorption in Lpar5ΔIEC mice, providing direct evidence for the regulatory role of LPA5. NHE3 activation involves trafficking of NHE3 from the terminal web to microvilli, and this mobilization of NHE3 by LPA was abolished in Lpar5ΔIEC mice. Dysregulation of NHE3 was specific to LPA, and insulin and cholera toxin were able to stimulate and inhibit NHE3, respectively, in both wild-type and Lpar5ΔIEC mice. The current study for the first time demonstrates the necessity of LPA5 in LPA-mediated stimulation of NHE3 in vivo. NEW & NOTEWORTHY This study is the first to assess the role of LPA5 in NHE3 regulation and fluid absorption in vivo using a mouse that lacks LPA5 in intestinal epithelial cells, Lpar5ΔIEC. Basal rates of NHE3 activity and fluid absorption, and total NHE3 expression were not changed in Lpar5ΔIEC mice. However, LPA did not activate NHE3 activity or fluid absorption in Lpar5ΔIEC mice, providing direct evidence for the regulatory role of LPA5.


1999 ◽  
Vol 73 (9) ◽  
pp. 7752-7760 ◽  
Author(s):  
Joanna J. Phillips ◽  
Ming Ming Chua ◽  
Ehud Lavi ◽  
Susan R. Weiss

ABSTRACT The mouse hepatitis virus (MHV) spike glycoprotein, S, has been implicated as a major determinant of viral pathogenesis. In the absence of a full-length molecular clone, however, it has been difficult to address the role of individual viral genes in pathogenesis. By using targeted RNA recombination to introduce the S gene of MHV4, a highly neurovirulent strain, into the genome of MHV-A59, a mildly neurovirulent strain, we have been able to directly address the role of the S gene in neurovirulence. In cell culture, the recombinants containing the MHV4 S gene, S4R22 and S4R21, exhibited a small-plaque phenotype and replicated to low levels, similar to wild-type MHV4. Intracranial inoculation of C57BL/6 mice with S4R22 and S4R21 revealed a marked alteration in pathogenesis. Relative to wild-type control recombinant viruses (wtR13 and wtR9), containing the MHV-A59 S gene, the MHV4 S gene recombinants exhibited a dramatic increase in virulence and an increase in both viral antigen staining and inflammation in the central nervous system. There was not, however, an increase in the level of viral replication in the brain. These studies demonstrate that the MHV4 S gene alone is sufficient to confer a highly neurovirulent phenotype to a recombinant virus deriving the remainder of its genome from a mildly neurovirulent virus, MHV-A59. This definitively confirms previous findings, suggesting that the spike is a major determinant of pathogenesis.


2009 ◽  
Vol 296 (1) ◽  
pp. R51-R56 ◽  
Author(s):  
Lori Asarian

To investigate the role of serotonin 2C receptors (2CR), which are expressed only in the central nervous system, in the satiating actions of the gut peptides CCK and glucagon-like peptide 1 (GLP-1), we examined 1) the effect of null mutations of serotonin 2CR (2CR KO) on the eating-inhibitory potencies of dark-onset intraperitoneal injections of 0.9, 1.7, or 3.5 nmol/kg (1, 2, or 4 μg/kg) CCK and 100, 200, and 400 nmol/kg (33, 66, or 132 μg/kg) GLP-1, and 2) the effects of intraperitoneal injections of 1.7 nmol//kg CCK and 100 nmol/kg GLP-1 on neuronal activation in the brain, as measured by c-Fos expression. All CCK and GLP-1 doses decreased 30-min food intake in wild-type (WT) mice, but none of them did in 2CR KO mice. CCK increased the number of cells expressing c-Fos in the nucleus tractus solitarii (NTS) of WT, but not 2CR KO mice. CCK induced similar degrees of c-Fos expression in the paraventricular (PVN) and arcuate (Arc) nuclei of the hypothalamus of both genotypes. GLP-1, on the other hand, increased c-Fos expression similarly in the NTS of both genotypes and increased c-Fos expression more in the PVN and Arc of 2CR KO mice, but not WT mice. These results indicate that serotonin signaling via serotonin 2CR is necessary for the full satiating effects of CCK and GLP-1. In addition, they suggest that the satiating effects of the two peptides are mediated by different neural mechanisms.


2006 ◽  
Vol 81 (2) ◽  
pp. 860-871 ◽  
Author(s):  
Christie Wacher ◽  
Marcus Müller ◽  
Markus J. Hofer ◽  
Daniel R. Getts ◽  
Regina Zabaras ◽  
...  

ABSTRACT The interferon (IFN)-stimulated genes (ISGs) ISG-49, ISG-54, and ISG-56 are highly responsive to viral infection, yet the regulation and function of these genes in vivo are unknown. We examined the simultaneous regulation of these ISGs in the brains of mice during infection with either lymphocytic choriomeningitis virus (LCMV) or West Nile virus (WNV). Expression of the ISG-49 and ISG-56 genes increased significantly during LCMV infection, being widespread and localized predominantly to common as well as distinct neuronal populations. Expression of the ISG-54 gene also increased but to lower levels and with a more restricted distribution. Although expression of the ISG-49, ISG-54, and ISG-56 genes was increased in the brains of LCMV-infected STAT1 and STAT2 knockout (KO) mice, this was blunted, delayed, and restricted to the choroid plexus, meninges, and endothelium. ISG-56 protein was regulated in parallel with the corresponding RNA transcript in the brain during LCMV infection in wild-type and STAT KO mice. Similar changes in ISG-49, ISG-54, and ISG-56 RNA levels and ISG-56 protein levels were observed in the brains of wild-type mice following infection with WNV. Thus, the ISG-49, ISG-54, and ISG-56 genes are coordinately upregulated in the brain during LCMV and WNV infection; this upregulation, in the case of LCMV, was totally (neurons) or partially (non-neurons) dependent on the IFN-signaling molecules STAT1 and STAT2. These findings suggest a dominant role for the ISG-49, ISG-54, and ISG-56 genes in the host response to different viruses in the central nervous system, where, particularly in neurons, these genes may have nonredundant functions.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Paweł Piatek ◽  
Magdalena Namiecinska ◽  
Małgorzata Domowicz ◽  
Marek Wieczorek ◽  
Sylwia Michlewska ◽  
...  

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS) mediated by autoreactive lymphocytes. The role of autoreactive lymphocytes in the CNS demyelination is well described, whereas very little is known about their role in remyelination during MS remission. In this study, we identified a new subpopulation of myelin-specific CD49d+CD154+ lymphocytes presented in the peripheral blood of MS patients during remission, that proliferated in vitro in response to myelin peptides. These lymphocytes possessed the unique ability to migrate towards maturing oligodendrocyte precursor cells (OPCs) and synthetize proinflammatory chemokines/cytokines. The co-culture of maturing OPCs with myelin-specific CD49d+CD154+ lymphocytes was characterized by the increase in proinflammatory chemokine/cytokine secretion that was not only a result of their cumulative effect of what OPCs and CD49d+CD154+ lymphocytes produced alone. Moreover, maturing OPCs exposed to exogenous myelin peptides managed to induce CD40-CD154-dependent CD49d+CD154+ lymphocyte proliferation. We confirmed, in vivo, the presence of CD49d+CD154+ cells close to maturating OPCs and remyelinating plaque during disease remission in the MS mouse model (C57Bl/6 mice immunized with MOG35-55) by immunohistochemistry. Three weeks after an acute phase of experimental autoimmune encephalomyelitis, CD49d+/CD154+ cells were found to be co-localized with O4+ cells (oligodendrocyte progenitors) in the areas of remyelination identified by myelin basic protein (MBP) labelling. These data suggested that myelin-specific CD49d+CD154+ lymphocytes present in the brain can interfere with remyelination mediated by oligodendrocytes probably as a result of establishing proinflammatory environment.


2006 ◽  
Vol 55 (9) ◽  
pp. 1291-1299 ◽  
Author(s):  
Yasuaki Aratani ◽  
Fumiaki Kura ◽  
Haruo Watanabe ◽  
Hisayoshi Akagawa ◽  
Yukie Takano ◽  
...  

The in vivo contribution of reactive oxygen species produced by neutrophils against Cryptococcus infection is not widely recognized. Myeloperoxidase (MPO) is a neutrophil-specific enzyme that catalyses the production of hypohalous acids such as HOCl from H2O2. This study investigated the role of MPO in immunological defence against Cryptococcus neoformans in an MPO-deficient (MPO−/−) mouse model. The survival of MPO−/− mice infected either intranasally or intravenously with C. neoformans was lower than that of identically challenged wild-type mice. The MPO−/− mice that received intranasal injection of C. neoformans had significantly larger lung fungal burdens than wild-type mice. On day 7, MPO−/− mice had a significantly higher lung concentration of interleukin (IL)-4 and lower concentrations of IL-2, IL-12p70 and interferon (IFN)-γ than wild-type mice, suggesting a weak Th1 response in the MPO−/− mice to C. neoformans. Pathologically, the MPO−/− mice with intranasal infection showed more severe pneumonia than wild-type mice, which was associated with an increase in the levels of IL-1α/β in the lungs. In addition, in MPO−/− mice, the pulmonary infection disseminated to the brain with occasional meningitis. The keratinocyte-derived cytokine (KC) level in the brain of infected MPO−/− mice was higher than that of control mice. Both intranasal and intravenous infections resulted in a higher number of fungi in the spleen of MPO−/− mice compared to wild-type, suggesting decreased resistance to C. neoformans not only in the lungs but also in the spleen in the absence of MPO. Taken together, these data suggest a major role of MPO in the response to cryptococcal infection.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Jiajie Yan ◽  
Weiwei Zhao ◽  
Qiang Zhang ◽  
Vladimir G Fast ◽  
Sumanth D Prabhu ◽  
...  

The c-Jun N-terminal kinase (JNK) is a stress-activated kinase that is important in the development of cardiovascular diseases. We have previously shown that enhanced JNK activation was associated with suppressed gap junction Cx43, slow conduction, and increased atrial fibrillation (AF) in aged rabbit left atrium (LA). In an atrial cellular model (HL-1), we further demonstrated that JNK activation downregulated Cx43 and enhanced arrhythmogenicity. However, direct evidence for JNK inducing atrial arrhythmia in vivo is lacking. In the present study, we found that JNK activator anisomycin (aniso) treatment in wild-type (WT) mouse in vivo resulted in a 30% decrease in Cx43 protein in LA vs that of vehicle-treated WT LA (p<0.001; n=4, 6; each sample contained mixed LAs from 5 mice). From optical mapping recordings in the intact LA, conduction velocity (CV) in aniso-treated WT mice slowed by 36% (30±2 vs. 47±1 cm/sec in vehicle-treated WT, pacing cycle length (CL) = 100ms, p<0.01; n=4, 3). Additional in vivo treatment with SP600125 (a specific JNK inhibitor) reversed aniso-induced Cx43 suppression (n=3) and CV slowing (50±2 cm/sec; n=6) as compared with WT LA treated with aniso alone (p<0.001). Moreover, we assessed atrial arrhythmia susceptibility in vivo using burst pacing delivered via an octapolar cardiac catheter. JNK activated hearts exhibited an increased incidence of pacing-induced AF (13%; n=7), while no AF was induced in WT-vehicle mice (n=4). To further confirm the specific role of JNK activation in atrial arrhythmogenicity, JNK2 (one of the cardiac JNK isoforms) knockout mice (JNK2KO) were treated with aniso in vivo. Similar to the effect of JNK inhibition by SP600125, JNK2 knockout prevented aniso-induced Cx43 suppression (n=3) and slowing of CV (47±1cm/sec, CL=100ms; n=4) compared with aniso-treated WT (p<0.05 & p<0.001, respectively). Furthermore, a dramatically decreased susceptibility to pacing-induced AF (1.7%; n=6) was found in aniso-treated JNK2KO vs aniso-treated WT mice. In conclusion, our results strongly suggest that JNK, especially JNK2, activation contributes to impaired cell-cell communication that in turn promotes AF development. Modulation of JNK2 could be a novel therapeutic approach to prevent and treat AF in the elderly.


2002 ◽  
Vol 175 (1) ◽  
pp. 251-260 ◽  
Author(s):  
AM Karssen ◽  
OC Meijer ◽  
IC van der Sandt ◽  
AG De Boer ◽  
EC De Lange ◽  
...  

In the present study, we have investigated the role of the multidrug resistance (mdr) P-glycoprotein (Pgp) at the blood-brain barrier in hampering the access of the synthetic glucocorticoid, prednisolone. In vivo, a tracer dose of [(3)H]prednisolone poorly penetrated the brain of adrenalectomised wild-type mice, but the uptake was more than threefold enhanced in the absence of Pgp expression in mdr1a (-/-) mice. In vitro, in stably transfected LLC-PK1 monolayers the human MDR1 P-glycoprotein was able to transport prednisolone present at a micromolar concentration. A specific Pgp blocker, LY 335979, could block this polar transport of [(3)H]prednisolone. Human Pgp does not transport all steroids, as cortexolone was not transported at all and aldosterone was only weakly transported. The ability of Pgp to export the synthetic glucocorticoid, prednisolone, suggests that uptake of prednisolone in the human brain is impaired, leading to a discrepancy between central and peripheral actions. Furthermore, the ensuing imbalance in activation of the two types of brain corticosteroid receptors may have consequences for cognitive performance and mood.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document