scholarly journals Human MAIT cells are devoid of alloreactive potential: prompting their use as universal cells for adoptive immune therapy

Author(s):  
Marie Tourret ◽  
Nana Talvard-Balland ◽  
Marion Lambert ◽  
Ghada Ben Youssef ◽  
Mathieu F. Chevalier ◽  
...  

ABSTRACTBackgroundMucosal associated invariant T (MAIT) cells are semi-invariant T cells that recognize microbial antigens presented by the highly conserved MR1 molecule. MAIT cells are predominantly localized in the liver and barrier tissues and are potent effectors of anti - microbial defense. MAIT cells are very few at birth and accumulate gradually over a period of about 6 years during infancy. The cytotoxic potential of MAIT cells, as well as their newly described regulatory and tissue repair functions, open the possibility of exploiting their properties in adoptive therapy. A prerequisite for their use as “universal” cells would be a lack of alloreactive potential, which remains to be demonstrated.MethodsWe used ex vivo, in vitro and in vivo models to determine if human MAIT cells contribute to allogeneic responses.ResultsWe show that recovery of MAIT cells after allogeneic hematopoietic stem cell transplantation recapitulates their slow physiological expansion in early childhood, independent of recovery of conventional T cells. In vitro, signals provided by allogeneic cells and cytokines do not induce sustained MAIT cell proliferation. In vivo, human MAIT cells do not expand nor accumulate in tissues in a model of T-cell mediated xenogeneic graft-versus-host disease (GVHD) in immunodeficient mice.ConclusionsAltogether, these results provide evidence that MAIT cells are devoid of alloreactive potential and pave the way for harnessing their translational potential in universal adoptive therapy overcoming barriers of HLA disparity.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1460-1460
Author(s):  
Laura A Paganessi ◽  
Lydia Luy Tan ◽  
Sucheta Jagan ◽  
Robin Frank ◽  
Antonio M. Jimenez ◽  
...  

Abstract Abstract 1460 Many patients with hematologic malignancies choose hematopoietic stem cell transplantation (HSCT) as a treatment option. The most common source of Hematopoietic Stem and Progenitor Cells (HSC/HPC) for adult recipients is mobilized Peripheral Blood (mobPB). Limited quantities of HSC/HPC obtainable from an umbilical cord restricts its use for adult recipients. Ex vivo treatment of umbilical cord blood (CB) with cytokines and growth factors is being used to expand the population of cord blood HSC/HPCs in hopes of obtaining higher numbers of transplantable CB cells. In addition, cytokines and growth factors are often utilized post-transplant in an attempt to improve the rate of immune reconstitution. It has been previously reported that granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage-colony-stimulating factor (GM-CSF) up-regulate CD26 (dipeptidyl peptidase IV/DPPIV) activity on freshly isolated CD34+ CB cells within 18 hours of culture [Christopherson, et al. Exp Hematol 2006]. Separate studies have demonstrated that treatment of uncultured CD34+ CB cells with the CD26 inhibitor Diprotin A increases transplant efficiency into immunodeficient mice [Christopherson, et al. Stem Cells Dev. 2007]. We evaluated here the in vitro and in vivo effects of CD26 inhibitor treatment on previously frozen CB CD34+ cells cultured ex vivo with G-CSF, GM-CSF or SCF for 48 hours. We examined CD26 expression by multivariate flow cytometry, CD26 activity using the established chromogenic CD26 substrate, Gly-Pro-p-nitroanilide (Gly-Pro-pNA), and SDF-1α induced migration and adhesion. In vivo, we examined long-term engraftment in NSG (NOD/SCID/IL2Rγnull) immunodeficient mice. After 48 hours of culture with cytokine treatment we observed altered CD26 expression on CD34+ CB cells. There was both an increase in the percentage of CD26+ cells and the mean fluorescence intensity (MFI) of CD26. Additionally, CD26 activity was 1.20, 1.59, 1.58, and 1.65 fold greater after ex vivo culture in untreated, G-CSF, GM-CSF and SCF treated CB CD34+ cells respectively compared to the CD26 activity prior to culture. The increase in CD26 activity as a result of treatment with G-CSF (p≤ 0.01), GM-CSF (p≤ 0.05) or SCF (p≤ 0.01) was significantly higher than the CD26 activity measured in the untreated cells following 48 hours of culture. Post-culture treatment with the CD26 inhibitor, Diprotin A, significantly improved SDF-1α induced migration and adhesion of cultured CD34+ CB cells in vitro, particularly in G-CSF treated cells (p≤ 0.05). Diprotin A treatment of CD34+ CB cells previously treated with G-CSF also significantly increased the long-term in vivo engraftment of stem and progenitor (CD34+CD38-, p=0.032), monocyte (CD14+, p=0.015), and megakaryocyte/platelet (CD61+, p=0.020) cells in the bone marrow of NSG mice. CD26 has been previously shown to cleave SDF-1 (stromal cell-derived factor 1/CXCL12). After cleavage, SDF-1 retains its ability to bind to its receptor (CXCR4) but no longer signals. SDF-1 is a powerful chemoattractant and has been shown to be important in mobilization, homing, and engraftment of HSCs and HPCs. This study demonstrates the influence of ex vivo culture and the effect of cytokine treatment on CD26 activity and subsequent biologic function related to HSCT. All three cytokines studied caused a significant increase in enzymatic activity at 48 hours compared to untreated cells. The up-regulation of CD26 protein expression caused by cytokine treatment for 48 hours, in particular G-CSF, had a significant impact on SDF-1 stimulated migration and adhesion. This was demonstrated in vitro by the improvement in cell function after CD26 inhibitor treatment and in vivo by the improved engraftment seen in the G-CSF treated cells with CD26 inhibitor treatment. These experiments suggest that combining CD26 inhibitor treatment following culture with G-CSF treatment during culture has the greatest overall benefit in engraftment outcome. By increasing our understanding of the effects of exogenous cytokines during culture on trafficking, ex vivo expanded CB has the potential to become a more effective means of not only increasing numbers of CB HSC/HPCs but also engraftment outcomes. This would ultimately allow expanded cord blood to become a more viable option for HSCT. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e16132-e16132
Author(s):  
M. Abedi ◽  
Q. Ma ◽  
A. Bais ◽  
E. Gomes ◽  
E. Beaudoin ◽  
...  

e16132 Background: We created chimeric immunoglobulin-T cell receptors (IgTCR) specific for prostate specific membrane antigen (PSMA). When expressed in patient T cells, these “designer T cells” specifically kill prostate cancer cells in vitro and in vivo in animal models, with 5/9 (55%) of xenografted mice experiencing complete remissions (Ma et al. Prostate 2004:61:12–25). A Phase I clinical trial was approved by the FDA in metastatic prostate cancers. Methods: Patient T cells are retrovirally transduced and expanded ex vivo to span dose levels of 10^9 to 10^11 T cells. Adapting methods of Dudley, Rosenberg and colleagues, patients undergo prior non-myeloablative (NMA) conditioning to create a “hematologic space” into which the infused designer T cells will stably engraft for prolonged in vivo efficacy. Patients are co-administered continuous infusion IL2. Outcomes will include Phase Ia goals of safety and toxicity and Phase Ib goals of establishing an optimal biologic dose in terms of designer T cell engraftment and tumor response. Results: For the first two patients, excellent T cell modifications of 50–60% were obtained. After NMA conditioning, T cells were infused and stable engraftments of 1–5% were observed post recovery, even at this lowest 10^9 T cell dose level, thus affirming one of the study end-points. The patients had PSA reductions of 50 and 70% in the two months following treatment. Patients experienced neutropenia and lymphopenia after conditioning, but no designer T cell-related toxicities. Results with additional patients will be described in terms of safety, engraftment efficiency and tumor responses. Conclusions: A new approach to adoptive immune therapy in metastatic prostate cancer has been devised. This clinical trial is funded by the US Army/DOD. No significant financial relationships to disclose.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5119-5119
Author(s):  
Annie Levesque ◽  
Ann-Louise Savard ◽  
Denis-Claude Roy ◽  
Francine Foss ◽  
Christian Scotto

Abstract Although the risk of graft versus host disease (GvHD) can be reduced by improved donor-recipient matching and by the depletion of T cells before transplantation, GvHD still develops in 30–70% of allogeneic hematopoietic stem cell transplantation (HSCT) patients. The chronic phase of the disease (cGvHD), for which the pathogenesis is similar to autoimmune diseases, involves profound immune dysregulation leading to both immunodeficiency and autoimmunity. Standard therapies for cGvHD such as corticosteroids and immunosuppressants are associated with high toxicity and have demonstrated limited efficacy in patients with extensive disease. Extracorporeal photopheresis (ECP) has been shown by others in the clinic as a non-aggressive and beneficial alternative treatment for cGvHD, inducing Th1/Th2 immunomodulation that restores immunological tolerance. Celmed has developed an alternative approach to eliminate immunoreactive T cells using the Theralux™ photodynamic cell therapy (PDT) system based on the use of the rhodamine-123 derivative TH9402 illuminated ex vivo with a visible light source (λ =514nm). It has been suggested that the apoptotic cells, when returned to the patient, may be able to modulate the immune system as seen with other ECP methods. We aimed to evaluate in vivo and in vitro the possibility of also using the Theralux™ system in the ECP setting. A preliminary mouse model suggested that splenic T cells pre-treated with the Theralux™ system were able to induce an improvement of overall survival (p<0.05) in mice with acute GvHD. Additionally, we developed a simplified PDT process and conducted a series of experiments with peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. These studies have shown that the intra- and inter-donor variability in TH9402 incorporation are very low (~5% and 10%, respectively). A dose-effect study has shown a relationship of the PDT conditions with the levels of cell death, allowing significant control of the level of apoptosis induced. Phenotypic analyses have shown that this process results in an increase of AnnexinV positive cells as well as a decrease in the absolute number of CD3+ cells, CD19+/CD20+ cells and CD14+ cells and an increase in CD11c+ cells. This would suggest that apoptosis could be induced in both autoreactive T and B cells which could potentially stimulate an immune response against them. Moreover, the increase in CD11c+ cells combined with the decrease in CD14+ cells could reflect the maturation of macrophages into dendritic cells that are very potent antigen presenting cells. The mechanism by which these specific PDT conditions induce cell death is still under investigation but preliminary studies have shown that the cell death in unselected resting PBMCs may be caspase-independent. Finally, the evaluation of the effect of PDT on samples from cGvHD patients also demonstrated the capacity of this treatment strategy to induce apoptosis in these cells. Based on these data, we intend to begin a pilot clinical study evaluating two controlled PDT conditions inducing different levels of apoptosis in order to assess the safety and biological effect of the Theralux™ ECP system to treat patients with cGvHD.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1670-1670
Author(s):  
Hiroto Araki ◽  
Kazumi Yoshinaga ◽  
Ronald Hoffman ◽  
Piernicola Boccuni ◽  
Nadim Mahmud

Abstract Human hematopoietic stem cells (HSCs) exposed to cytokine combinations in vitro rapidly divide and lose their characteristic functional properties presumably due to the alteration of a genetic program which determines the properties of HSC. In order to expand the number of HSC present in a single unit of cord blood (CB) ex vivo, self-renewal type of HSC division must occur. We hypothesize that in vitro culture conditions result in the silencing of genes crucial for HSC maintenance and that silencing of these genes can be circumvented by addition of chromatin modifying agents. We have attempted to reverse the silencing of the genes crucial for HSC self-renewal which apparently occurs during the ex vivo culture by treatment of CD34+ cells with the chromatin modifying agents, 5-aza-2-deoxycytidine (5azaD) and trichostatin A (TSA). In our current studies, we have investigated the mechanism of expansion of SRC following treatment with chromatin modifying agents in the culture. We demonstrate that all CD34+CD90+ cells treated with 5azaD/TSA and cytokines after 9 days of incubation divide, but to a lesser degree than cells exposed to cytokines alone. CD34+CD90+ cells exposed to the chromatin modifying agents are capable of producing greater numbers of primitive multipotential progenitors and also form cobblestone areas. When CD34+CD90+ cells that had undergone extensive number of cell divisions (5–10) in vitro in the presence of cytokines alone were re-isolated by FACS and transplanted into immunodeficient mice, donor cell chimerism was not detectable (0 of 5 mice). By contrast, 5azaD/TSA treated cells that had undergone similar numbers of cell divisions retain their marrow repopulating potential (3 of 6 mice). To test whether chromatin modifying agents treated cells following culture possess long-term in vivo repopulation potential, we have performed secondary NOD/SCID assay. Five of six secondary NOD/SCID mice receiving bone marrow from primary mice engrafted with cells treated with 5azaD/TSA resulted in human cell engraftment, indicating that these cells are capable of secondary reconstitution. To understand the molecular mechanism responsible for the expansion of HSC observed following 5azaD/TSA treatment, we examined transcription levels of several genes and their products (i.e., HOXB4, Bmi-1 and P21) implicated in self-renewal of HSC using real-time quantitative PCR and Western blot. The expression of these genes and their products were up-regulated in CB cells treated with 5azaD/TSA. We have also compared the efficacy of an additional HDAC inhibitor valproic acid (VPA) in order to determine its ability to expand HSC ex vivo. VPA was capable of dramatic expansion of CD34+CD90+ cells as well as progenitor cells but was unable to expand SRC. However, unlike the culture exposed to cytokines alone VPA treatment resulted in maintenance of SRC numbers. Currently, we are investigating key candidate genes accountable for the expansion of SRC using a global microarray approach analyzing cells exposed to various chromatin modifying agents in conjunction with their in vivo functional potential. In summary, our data suggest that the loss of SRC can be circumvented by the use of chromatin modifying agents in the culture which results in a slower rate of cell division and is associated with higher expression of a group of HSC regulatory genes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1469-1469
Author(s):  
Xiuli Wang ◽  
Wen-Chung Chang ◽  
ChingLam W Wong ◽  
David Colcher ◽  
Mark Sherman ◽  
...  

Abstract Abstract 1469 Hematopoietic cell-based therapies, including genetically manipulated cell products derived from either hematopoietic stem cells or T cells, is an emerging area in applied biotechnology. In both of these venues, a variety of genetic engineering approaches are being studied to endow cells with novel attributes, to increase their therapeutic potency and/or safety. Common to the field of ex vivo cellular genetic engineering is the need to purify cells that express desired quantities of therapeutic transgene(s) and cull out non-expressing cells that either lack transgene endowed therapeutic activity or safety features. However, current drug selection strategies are associated with prolonged ex vivo culture that drives terminal differentiation of the T cells, which has in turn been found to be associated with impaired antitumor efficacy of adoptively transferred CD8+ T cells in vivo. Thus, we were interested in developing a single transgene encoded polypeptide that can serve both as an ex vivo selection epitope and in vivo tracking marker/target for mAb-mediated cell ablation, while fulfilling the criteria of being functionally inert, non immunogenic, and amenable to commercially available cGMP-grade selection systems appropriate for clinical use. Here we describe a truncated human EGFR polypeptide (huEGFRt) devoid of extracellular N-terminal ligand binding domains and intracellular receptor tyrosine kinase domains. Retained features of huEGFRt include type I transmembrane cell surface localization and a conformationally intact binding epitope for pharmaceutical-grade anti-EGFR mAb, cetuximab/Erbitux™. Applying this system to cellular immunotherapy, we designed lentiviral vector prototypes housing multifunctional constructs combining huEGFRt with CD19-specific chimeric antigen receptors (CARs), and demonstrate that biotinylated-cetuximab immunomagnetic selection of transduced human T cells results in coordinate enrichment of CAR+ cells from 2% to over 90%. The huEGFRt-mediated selection did not affect the phenotype (i.e., TCR, CD3, CD4, CD8, CD28, and granzyme A expression), the in vitro expansion potential, nor the in vivo engraftment fitness (upon transfer into immunodeficient mice) of the T cells. Direct examination of EGF-binding and phospho-tyrosine analysis confirmed that this selection marker is functionally inert and has no negative effect on the T cell product. In addition, cytotoxicity against B cell malignancies and IFN-g/TNF-a production through the CD19-specific CAR was dramatically enhanced in the huEGFRt-selected population. The utility of huEGFRt in tracking the gene modified, transferred cells in vivo within easily obtained human tissues such as blood, bone marrow and tissue biopsies was then also proven via detection of huEGFRt using multiparameter flow cytometric analysis or FDA approved immunohistochemical techniques/reagents. In addition, we were able to demonstrate that Erbitux™ could mediate ADCC of huEGFRt+ T cells in vitro and inhibit the growth of huEGFRt+ CTLL2 cells in NOD/Scid mice, supporting the use of huEGFRt as a suicide gene via cetuximab-mediated ADCC after adoptive transfer. Together these data suggest that huEGFRt is a superior selection marker for any transduction system that can be applied to the generation of cell products for hematopoietic cell-based medical therapies. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 236 (11) ◽  
pp. 1291-1297 ◽  
Author(s):  
Abdul Mannan Baru ◽  
Jayendra Kumar Krishnaswamy ◽  
Anchana Rathinasamy ◽  
Michaela Scherr ◽  
Matthias Eder ◽  
...  

Dendritic cells (DCs) are essential for the generation and modulation of cell-mediated adaptive immunity against infections. DC-based vaccination involves transplantation of ex vivo-generated DCs loaded with antigen in vitro, but remains limited by the number of autologous or allogeneic cells. While in vitro expansion and differentiation of hematopoietic stem cells (HSCs) into DCs seems to be the most viable alternative to overcome this problem, the complexity of HSC expansion in vitro has posed significant limitations for clinical application. We immortalized lineage-depleted murine hematopoietic bone marrow (lin−BM) cells with HOXB4, and differentiated them into CD11c+MHCII+ DCs. These cells showed the typical DC phenotype and upregulated surface expression of co-stimulatory molecules on stimulation with various toll-like receptor ligands. These DCs efficiently presented exogenous antigen to T-cells via major histocompatibility complex (MHC) I and II and viral antigen on infection. Finally, they showed migratory capacity and were able to generate antigen-specific primed T-cells in vivo. In summary, we provide evidence that HOXB4-transduced lin−BM cells can serve as a viable means of generating fully functional DCs for scientific and therapeutic applications.


2016 ◽  
Vol 213 (9) ◽  
pp. 1881-1900 ◽  
Author(s):  
Martin Chopra ◽  
Marlene Biehl ◽  
Tim Steinfatt ◽  
Andreas Brandl ◽  
Juliane Kums ◽  
...  

Donor CD4+Foxp3+ regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT [allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2- and T reg cell–dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashton C. Trotman-Grant ◽  
Mahmood Mohtashami ◽  
Joshua De Sousa Casal ◽  
Elisa C. Martinez ◽  
Dylan Lee ◽  
...  

AbstractT cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


Sign in / Sign up

Export Citation Format

Share Document