scholarly journals Drug Repositioning by Merging Active Subnetworks Validated in Cancer and COVID-19

Author(s):  
Marta Lucchetta ◽  
MARCO Pellegrini

Computational Drug Repositioning aims at ranking and selecting existing drugs for use in novel diseases or existing diseases for which these drugs were not originally designed. Using vast amounts of available omic data in digital form within an in silico screening has the potential for speeding up considerably the shortlisting of promising candidates in response to outbreaks of diseases such as COVID-19 for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for preclinical computational drug repositioning based on merging multiple drug rankings obtained with an ensemble of Disease Active Subnetwork construction algorithms. DrugMerge uses differential transcriptomic data from cell lines/tissues of patients affected by the disease and differential transcriptomic data from drug perturbation assays, in the context of a large gene co-expression network. Experiments with four benchmark diseases (Asthma, Rheumatoid Arthritis, Prostate Cancer, and Colorectal Cancer) demonstrate that our method detects in first position drugs in clinical use for the specified disease, in all four cases. Our method is competitive with the state-of-the-art tools such as CMAP (Connectivity Map). Application of DrugMerge to COVID-19 data found rankings with many drugs currently in clinical trials for COVID-19 in top positions, thus showing that DrugMerge is able to mimic human expert judgment

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Lucchetta ◽  
Marco Pellegrini

AbstractComputational drug repositioning aims at ranking and selecting existing drugs for novel diseases or novel use in old diseases. In silico drug screening has the potential for speeding up considerably the shortlisting of promising candidates in response to outbreaks of diseases such as COVID-19 for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for preclinical computational drug repositioning based on merging multiple drug rankings obtained with an ensemble of disease active subnetworks. DrugMerge uses differential transcriptomic data on drugs and diseases in the context of a large gene co-expression network. Experiments with four benchmark diseases demonstrate that our method detects in first position drugs in clinical use for the specified disease, in all four cases. Application of DrugMerge to COVID-19 found rankings with many drugs currently in clinical trials for COVID-19 in top positions, thus showing that DrugMerge can mimic human expert judgment.


Author(s):  
Fabricio Almeida-Silva ◽  
Kanhu C Moharana ◽  
Thiago M Venancio

Abstract In the past decade, over 3000 samples of soybean transcriptomic data have accumulated in public repositories. Here, we review the state of the art in soybean transcriptomics, highlighting the major microarray and RNA-seq studies that investigated soybean transcriptional programs in different tissues and conditions. Further, we propose approaches for integrating such big data using gene coexpression network and outline important web resources that may facilitate soybean data acquisition and analysis, contributing to the acceleration of soybean breeding and functional genomics research.


2020 ◽  
Vol 67 ◽  
pp. 607-651
Author(s):  
Margarita Paz Castro ◽  
Chiara Piacentini ◽  
Andre Augusto Cire ◽  
J. Christopher Beck

We investigate the use of relaxed decision diagrams (DDs) for computing admissible heuristics for the cost-optimal delete-free planning (DFP) problem. Our main contributions are the introduction of two novel DD encodings for a DFP task: a multivalued decision diagram that includes the sequencing aspect of the problem and a binary decision diagram representation of its sequential relaxation. We present construction algorithms for each DD that leverage these different perspectives of the DFP task and provide theoretical and empirical analyses of the associated heuristics. We further show that relaxed DDs can be used beyond heuristic computation to extract delete-free plans, find action landmarks, and identify redundant actions. Our empirical analysis shows that while DD-based heuristics trail the state of the art, even small relaxed DDs are competitive with the linear programming heuristic for the DFP task, thus, revealing novel ways of designing admissible heuristics.


2018 ◽  
Author(s):  
Khader Shameer ◽  
Kipp W. Johnson ◽  
Benjamin S. Glicksberg ◽  
Rachel Hodos ◽  
Ben Readhead ◽  
...  

ABSTRACTDrug repositioning, i.e. identifying new uses for existing drugs and research compounds, is a cost-effective drug discovery strategy that is continuing to grow in popularity. Prioritizing and identifying drugs capable of being repositioned may improve the productivity and success rate of the drug discovery cycle, especially if the drug has already proven to be safe in humans. In previous work, we have shown that drugs that have been successfully repositioned have different chemical properties than those that have not. Hence, there is an opportunity to use machine learning to prioritize drug-like molecules as candidates for future repositioning studies. We have developed a feature engineering and machine learning that leverages data from publicly available drug discovery resources: RepurposeDB and DrugBank. ChemVec is the chemoinformatics-based feature engineering strategy designed to compile molecular features representing the chemical space of all drug molecules in the study. ChemVec was trained through a variety of supervised classification algorithms (Naïve Bayes, Random Forest, Support Vector Machines and an ensemble model combining the three algorithms). Models were created using various combinations of datasets as Connectivity Map based model, DrugBank Approved compounds based model, and DrugBank full set of compounds; of which RandomForest trained using Connectivity Map based data performed the best (AUC=0.674). Briefly, our study represents a novel approach to evaluate a small molecule for drug repositioning opportunity and may further improve discovery of pleiotropic drugs, or those to treat multiple indications.


2015 ◽  
Vol 16 (S13) ◽  
Author(s):  
Hui Huang ◽  
Thanh Nguyen ◽  
Sara Ibrahim ◽  
Sandeep Shantharam ◽  
Zongliang Yue ◽  
...  

Author(s):  
Xu Chu ◽  
Yang Lin ◽  
Yasha Wang ◽  
Leye Wang ◽  
Jiangtao Wang ◽  
...  

Drug-drug interactions (DDIs) are a major cause of preventable hospitalizations and deaths. Recently, researchers in the AI community try to improve DDI prediction in two directions, incorporating multiple drug features to better model the pharmacodynamics and adopting multi-task learning to exploit associations among DDI types. However, these two directions are challenging to reconcile due to the sparse nature of the DDI labels which inflates the risk of overfitting of multi-task learning models when incorporating multiple drug features. In this paper, we propose a multi-task semi-supervised learning framework MLRDA for DDI prediction. MLRDA effectively exploits information that is beneficial for DDI prediction in unlabeled drug data by leveraging a novel unsupervised disentangling loss CuXCov. The CuXCov loss cooperates with the classification loss to disentangle the DDI prediction relevant part from the irrelevant part in a representation learnt by an autoencoder, which helps to ease the difficulty in mining useful information for DDI prediction in both labeled and unlabeled drug data. Moreover, MLRDA adopts a multi-task learning framework to exploit associations among DDI types. Experimental results on real-world datasets demonstrate that MLRDA significantly outperforms state-of-the-art DDI prediction methods by up to 10.3% in AUPR.


2019 ◽  
Author(s):  
Nathaniel Lim ◽  
Paul Pavlidis

SummaryThe Connectivity Map (CMap) is a popular resource designed for data-driven drug repositioning using a large transcriptomic compendium. However, evaluations of its performance are limited. We used two iterations of CMap (CMap 1 and 2) to assess their comparability and reliability. We queried CMap 2 with CMap 1-derived signatures, expecting CMap 2 would highly prioritize the queried compounds; success rate was 17%. Analysis of previously published prioritizations yielded similar results. Low recall is caused by low differential expression (DE) reproducibility both between CMaps and within each CMap. DE strength was predictive of reproducibility, and is influenced by compound concentration and cell-line responsiveness. Reproducibility of CMap 2 sample expression levels was also lower than expected. We attempted to identify the “better” CMap by comparison with a third dataset, but they were mutually discordant. Our findings have implications for CMap usage and we suggest steps for investigators to limit false positives.


Author(s):  
João Rema ◽  
Filipa Novais ◽  
Diogo Telles-Correia

: There is an increasing amount of data arising from neurobehavioral sciences and medical records that cannot be adequately analyzed by traditional research methods. New drugs develop at a slow rate and seem unsatisfactory for the majority of neurobehavioral disorders. Machine learning (ML) techniques, instead, can incorporate psychopathological, computational, cognitive, and neurobiological underpinning knowledge leading to a refinement of detection, diagnosis, prognosis, treatment, research, and support. Machine and deep learning methods are currently used to accelerate the process of discovering new pharmacological targets and drugs. Objective: The present work reviews current evidence regarding the contribution of machine learning to the discovery of new drug targets. Methods: Scientific articles from PubMed, SCOPUS, EMBASE, and Web of Science Core Collection published until May 2021 were included in this review. Results : The most significant areas of research are schizophrenia, depression and anxiety, Alzheimer´s disease, and substance use disorders. ML techniques have pinpointed target gene candidates and pathways, new molecular substances, and several biomarkers regarding psychiatric disorders. Drug repositioning studies using ML have identified multiple drug candidates as promising therapeutic agents. Conclusion: Next-generation ML techniques and subsequent deep learning may power new findings regarding the discovery of new pharmacological agents by bridging the gap between biological data and chemical drug information.


2020 ◽  
Vol 5 (4) ◽  
pp. 333-345
Author(s):  
Janus Wawrzinek ◽  
José María González Pinto ◽  
Oliver Wiehr ◽  
Wolf-Tilo Balke

Abstract State-of-the-art approaches in the field of neural embedding models (NEMs) enable progress in the automatic extraction and prediction of semantic relations between important entities like active substances, diseases, and genes. In particular, the prediction property is making them valuable for important research-related tasks such as hypothesis generation and drug repositioning. A core challenge in the biomedical domain is to have interpretable semantics from NEMs that can distinguish, for instance, between the following two situations: (a) drug x induces disease y and (b) drug x treats disease y. However, NEMs alone cannot distinguish between associations such as treats or induces. Is it possible to develop a model to learn a latent representation from the NEMs capable of such disambiguation? To what extent do we need domain knowledge to succeed in the task? In this paper, we answer both questions and show that our proposed approach not only succeeds in the disambiguation task but also advances current growing research efforts to find real predictions using a sophisticated retrospective analysis. Furthermore, we investigate which type of associations is generally better contextualized and therefore probably has a stronger influence in our disambiguation task. In this context, we present an approach to extract an interpretable latent semantic subspace from the original embedding space in which therapeutic drug–disease associations are more likely .


Sign in / Sign up

Export Citation Format

Share Document