scholarly journals A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius)

2021 ◽  
Author(s):  
Autumn R Brown ◽  
Kaylee Comai ◽  
Dominic Mannino ◽  
Haily McCullough ◽  
Hunter C Meyers ◽  
...  

Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs—Albino, Lavender Albino, and Ultramel—show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.

2021 ◽  
Author(s):  
Mine Koprulu ◽  
Yajie Zhao ◽  
Eleanor Wheeler ◽  
Liang Dong ◽  
Nuno Rocha ◽  
...  

Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key determinant of metabolic health, have been limited by the difficulty in linking identified predominantly non-coding variants to specific gene targets. Rare coding variant analyses provide greater confidence that a specific gene is involved, but do not necessarily indicate whether gain or loss of function would be of most therapeutic benefit. Here we use a dual approach that combines the power of genome-wide analysis of array-based rare, non-synonymous variants in 184,246 individuals of UK Biobank with exome-sequence-based rare loss of function gene burden testing. The data indicates that loss-of-function (LoF) of four genes (PLIN1, INSR, ACVR1C and PDE3B) is associated with a beneficial impact on WHRadjBMI and increased gluteofemoral fat mass, whereas PLIN4 LoF adversely affects these parameters. This study robustly implicates these genes in the regulation of fat distribution, providing new and in some cases somewhat counter-intuitive insight into the potential consequences of targeting these molecules therapeutically.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter Sparber ◽  
Svetlana Mikhaylova ◽  
Varvara Galkina ◽  
Yulia Itkis ◽  
Mikhail Skoblov

Pathogenic variants in the SCN1A gene are associated with a spectrum of epileptic disorders ranging in severity from familial febrile seizures to Dravet syndrome. Large proportions of reported pathogenic variants in SCN1A are annotated as missense variants and are often classified as variants of uncertain significance when no functional data are available. Although loss-of-function variants are associated with a more severe phenotype in SCN1A, the molecular mechanism of single nucleotide variants is often not clear, and genotype-phenotype correlations in SCN1A-related epilepsy remain uncertain. Coding variants can affect splicing by creating novel cryptic splicing sites in exons or by disrupting exonic cis-regulation elements crucial for proper pre-mRNA splicing. Here, we report a novel case of Dravet syndrome caused by an undescribed missense variant, c.4852G>A (p.(Gly1618Ser)). By midigene splicing assay, we demonstrated that the identified variant is in fact splice-affecting. To our knowledge, this is the first report on the functional investigation of a missense variant affecting splicing in Dravet syndrome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucas D. Ward ◽  
Ho-Chou Tu ◽  
Chelsea B. Quenneville ◽  
Shira Tsour ◽  
Alexander O. Flynn-Carroll ◽  
...  

AbstractUnderstanding mechanisms of hepatocellular damage may lead to new treatments for liver disease, and genome-wide association studies (GWAS) of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum activities have proven useful for investigating liver biology. Here we report 100 loci associating with both enzymes, using GWAS across 411,048 subjects in the UK Biobank. The rare missense variant SLC30A10 Thr95Ile (rs188273166) associates with the largest elevation of both enzymes, and this association replicates in the DiscovEHR study. SLC30A10 excretes manganese from the liver to the bile duct, and rare homozygous loss of function causes the syndrome hypermanganesemia with dystonia-1 (HMNDYT1) which involves cirrhosis. Consistent with hematological symptoms of hypermanganesemia, SLC30A10 Thr95Ile carriers have increased hematocrit and risk of iron deficiency anemia. Carriers also have increased risk of extrahepatic bile duct cancer. These results suggest that genetic variation in SLC30A10 adversely affects more individuals than patients with diagnosed HMNDYT1.


2021 ◽  
pp. 1-10
Author(s):  
Sophie E. Legge ◽  
Marcos L. Santoro ◽  
Sathish Periyasamy ◽  
Adeniran Okewole ◽  
Arsalan Arsalan ◽  
...  

Abstract Schizophrenia is a severe psychiatric disorder with high heritability. Consortia efforts and technological advancements have led to a substantial increase in knowledge of the genetic architecture of schizophrenia over the past decade. In this article, we provide an overview of the current understanding of the genetics of schizophrenia, outline remaining challenges, and summarise future directions of research. World-wide collaborations have resulted in genome-wide association studies (GWAS) in over 56 000 schizophrenia cases and 78 000 controls, which identified 176 distinct genetic loci. The latest GWAS from the Psychiatric Genetics Consortium, available as a pre-print, indicates that 270 distinct common genetic loci have now been associated with schizophrenia. Polygenic risk scores can currently explain around 7.7% of the variance in schizophrenia case-control status. Rare variant studies have implicated eight rare copy-number variants, and an increased burden of loss-of-function variants in SETD1A, as increasing the risk of schizophrenia. The latest exome sequencing study, available as a pre-print, implicates a burden of rare coding variants in a further nine genes. Gene-set analyses have demonstrated significant enrichment of both common and rare genetic variants associated with schizophrenia in synaptic pathways. To address current challenges, future genetic studies of schizophrenia need increased sample sizes from more diverse populations. Continued expansion of international collaboration will likely identify new genetic regions, improve fine-mapping to identify causal variants, and increase our understanding of the biology and mechanisms of schizophrenia.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 470
Author(s):  
Jeremy W. Prokop ◽  
Caleb P. Bupp ◽  
Austin Frisch ◽  
Stephanie M. Bilinovich ◽  
Daniel B. Campbell ◽  
...  

Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 706
Author(s):  
Angela Sparago ◽  
Flavia Cerrato ◽  
Laura Pignata ◽  
Francisco Cammarata-Scalisi ◽  
Livia Garavelli ◽  
...  

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder characterized by prenatal and/or postnatal overgrowth, organomegaly, abdominal wall defects and tumor predisposition. CDKN1C is a maternally expressed gene of the 11p15.5 chromosomal region and is regulated by the imprinting control region IC2. It negatively controls cellular proliferation, and its expression or activity are frequently reduced in BWS. In particular, loss of IC2 methylation is associated with CDKN1C silencing in the majority of sporadic BWS cases, and maternally inherited loss-of-function variants of CDKN1C are the most frequent molecular defects of familial BWS. We have identified, using Sanger sequencing, novel CDKN1C variants in three families with recurrent cases of BWS, and a previously reported variant in a woman with recurrent miscarriages with exomphalos. Clinical evaluation of the patients showed variable manifestation of the disease. The frameshift and nonsense variants were consistently associated with exomphalos, while the missense variant caused a less severe phenotype. Pregnancy loss and perinatal lethality were found in the families segregating nonsense mutations. Intrafamilial variability of the clinical BWS features was observed, even between siblings. Our data are indicative of severe BWS phenotypes that, with variable expressivity, may be associated with both frameshift and nonsense variants of CDKN1C.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Takuya Akiyama ◽  
Sırma D User ◽  
Matthew C Gibson

The majority of mutations studied in animal models are designated as recessive based on the absence of visible phenotypes in germline heterozygotes. Accordingly, genetic studies primarily rely on homozygous loss-of-function to determine gene requirements, and a conceptually-related ‘two-hit model’ remains the central paradigm in cancer genetics. Here we investigate pathogenesis due to somatic mutation in epithelial tissues, a process that predominantly generates heterozygous cell clones. To study somatic mutation in Drosophila, we generated inducible alleles that mimic human Juvenile polyposis-associated BMPR1A mutations. Unexpectedly, four of these mutations had no phenotype in heterozygous carriers but exhibited clear tissue-level effects when present in somatic clones of heterozygous cells. We conclude that these alleles are indeed recessive when present in the germline, but nevertheless deleterious when present in heterozygous clones. This unforeseen effect, deleterious heteromosaicism, suggests a ‘one-hit’ mechanism for disease initiation that may explain some instances of pathogenesis associated with spontaneous mutation.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
F Luo ◽  
E Smagris ◽  
J A Fletcher ◽  
J C Cohen ◽  
H H Hobbs

Abstract Background A missense variant in Transmembrane 6 Superfamily Member 2 [TM6SF2 (E167K)] is associated with reduced plasma lipid levels and protection from coronary atherosclerosis. The substitution of lysine for glutamate at residue 167 is associated with a marked decrease in TM6SF2 protein expression, consistent with a loss-of-function mutation. However the biological role of TM6SF2 is not known, and the mechanism(s) responsible for the hypolipidemia associated with mutation gene has not been fully defined. To elucidate the pathological mechanism for the hypolipidemia associated with TM6SF2 deficiency, we inactivated Tm6sf2 in mice and rats. Methods Tm6sf2−/− mice were generated as described previously. Two lines of Tm6sf2−/− rats with different frameshift mutations in exon 1 were generated using CRISPR/Cas9 technology. Primary hepatocytes were isolated from WT and Tm6sf2−/− mice for microscopy. Rats were fasted 16 or 4 hours and tissues were collected on ice for cell fractionation, and in liquid nitrogen for biochemical analyses. Frozen samples were stored at −80°C for subsequent analyses. Result In both mice and rats, inactivation of Tm6sf2 recapitulated the phenotype of humans with the E167K substitution: steatosis, reduced plasma lipid levels, and transaminitis. The phenotype was readily apparent in animals fed chow diets. Both species had reduced secretion of VLDL-TG, as determined by TRITON WR1399 injection, with no decrease in secretion of ApoB. Experiments in isolated perfused livers from WT and Tm6sf2−/− mice confirmed that the decreased TG secretion observed in intact animals reflected reduced TG secretion from the liver. Lipidomic analysis of the liver perfusates by by LC-MS indicated that secretion of cholesteryl esters, and phospholipids was also decreased in the KO animals. Taken together, these findings are consistent with a role for TM6SF2 in lipidation of ApoB-containing lipoproteins. To further elucidate the function of TM6SF2, we used fluorescence microscopy and cell fractionation to determine the subcellular localization of the protein. Microscopic analysis showed that TM6SF2 co-localized with ER and Golgi markers, but cell fractionation studies indicated that the protein is located primarily in the smooth ER. The ratio of TG to ApoB was lower in Golgi fractions from TM6sf2−/− rats than in corresponding fractions from WT animals. Conclusions Since the sequela of TM6SF2 inactivation are already apparent in the Golgi, we speculate that TM6SF2 promotes lipidation of VLDL in a pre-Golgi compartment. We are currently performing additional studies to further define the specific mechanism whereby TM6SF2 promotes lipidation of ApoB-containing lipoproteins. FUNDunding Acknowledgement Type of funding sources: Foundation. Main funding source(s): National Institutes of Health


2021 ◽  
Vol 7 (2) ◽  
pp. e571 ◽  
Author(s):  
Suzanne E. Schindler ◽  
Carlos Cruchaga ◽  
Amulya Joseph ◽  
Lena McCue ◽  
Fabiana H.G. Farias ◽  
...  

ObjectiveTo evaluate for racial differences in triggering receptor expressed on myeloid cells 2 (TREM2), a key immune mediator in Alzheimer disease, the levels of CSF soluble TREM2 (sTREM2), and the frequency of associated genetic variants were compared in groups of individuals who self-reported their race as African American (AA) or non-Hispanic White (NHW).MethodsCommunity-dwelling older research participants underwent measurement of CSF sTREM2 concentrations and genetic analyses.ResultsThe primary cohort included 91 AAs and 868 NHWs. CSF sTREM2 levels were lower in the AA compared with the NHW group (1,336 ± 470 vs 1,856 ± 624 pg/mL, p < 0.0001). AAs were more likely to carry TREM2 coding variants (15% vs 3%, p < 0.0001), which were associated with lower CSF sTREM2. AAs were less likely to carry the rs1582763 minor allele (8% vs 37%, p < 0.0001), located near MS4A4A, which was associated with higher CSF sTREM2. These findings were replicated in an independent cohort of 23 AAs and 917 NHWs: CSF sTREM2 levels were lower in the AA group (p = 0.03), AAs were more likely to carry coding TREM2 variants (22% vs 4%, p = 0.002), and AAs were less likely to carry the rs1582763 minor allele (16% vs 37%, p = 0.003).ConclusionsOn average, AAs had lower CSF sTREM2 levels compared with NHWs, potentially because AAs are more likely to carry genetic variants associated with lower CSF sTREM2 levels. Importantly, CSF sTREM2 reflects TREM2-mediated microglial activity, a critical step in the immune response to amyloid plaques. These findings suggest that race may be associated with risk for genetic variants that influence Alzheimer disease–related inflammation.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241215
Author(s):  
Seung Mi Lee ◽  
Yoomi Park ◽  
Young Ju Kim ◽  
Han-Sung Hwang ◽  
Heewon Seo ◽  
...  

Introduction Ritodrine is one of the most commonly used tocolytics in preterm labor, acting as a ß2-adrenergic agonist that reduces intracellular calcium levels and prevents myometrial activation. Ritodrine infusion can result in serious maternal complications, and pulmonary edema is a particular concern among these. The cause of pulmonary edema following ritodrine treatment is multifactorial; however, the contributing genetic factors remain poorly understood. This study investigates the genetic variants associated with ritodrine-induced pulmonary edema. Methods In this case-control study, 16 patients who developed pulmonary edema during ritodrine infusion [case], and 16 pregnant women who were treated with ritodrine and did not develop pulmonary edema [control] were included. The control pregnant women were selected after matching for plurality and gestational age at the time of tocolytic use. Maternal blood was collected during admission for tocolytic treatment, and whole exome sequencing was performed with the stored blood samples. Results Gene-wise variant burden (GVB) analysis resulted in a total of 71 candidate genes by comparing the cumulative effects of multiple coding variants for 19729 protein-coding genes between the patients with pulmonary edema and the matched controls. Subsequent data analysis selected only the statistically significant and deleterious variants compatible with ritodrine-induced pulmonary edema. Two final candidate variants in CPT2 and ADRA1A were confirmed by Sanger sequencing. Conclusions We identified new potential variants in genes that play a role in cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) regulation, which supports their putative involvement in the predisposition to ritodrine-induced pulmonary edema in pregnant women.


Sign in / Sign up

Export Citation Format

Share Document