scholarly journals Pseudo-mutant p53 as a targetable phenotype of DNMT3A-mutated pre-leukemia

2021 ◽  
Author(s):  
Amos Tuval ◽  
Yardena Brilon ◽  
Hadas Ezogy ◽  
Yoni Moskovitz ◽  
Tamir Biezuner ◽  
...  

Pre-leukemic clones carrying DNMT3A mutations have a selective advantage and an inherent chemo-resistance, however the basis for this phenotype has not been fully elucidated. Mutations affecting the gene TP53 occur in pre-leukemic hematopoietic stem/progenitor cells (preL-HSPCs) and lead to chemo-resistance. Many of these mutations cause a conformational change and some of them were shown to enhance self-renewal capacity of preL-HSPCs. Intriguingly, a misfolded p53 was described in AML blasts that do not harbor mutations in TP53, emphasizing the dynamic equilibrium between a wild-type (WT) and a pseudo-mutant conformations of p53. By combining single cell analyses and p53 conformation-specific monoclonal antibodies we studied preL-HSPCs from primary human DNMT3A AML samples. We found that while leukemic blasts express mainly the WT conformation, in preL-HSPCs the pseudo-mutant conformation is the dominant. HSPCs from non-leukemic samples expressed both conformations to a similar extent. Treatment with a short peptide that can shift the dynamic equilibrium favoring the WT conformation of p53, specifically eliminated preL-HSPCs that had dysfunctional canonical p53 pathway activity as reflected by single cell RNA sequencing. Our observations shed light upon a possible targetable p53 dysfunction in human preL-HSPCs carrying DNMT3A mutations. This opens new avenues for leukemia prevention.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2762-2762
Author(s):  
Ran Chen ◽  
Riddhi M Patel ◽  
Emily B Casey ◽  
Jeffrey A. Magee

Abstract KMT2C is one of several tumor suppressor genes deleted in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) as part of larger chromosome 7q deletions. These deletions are particularly common in therapy-related MDS/AML, raising the question of whether loss of one or more 7q genes conveys a selective advantage to hematopoietic stem cells (HSCs) in the setting of chemotherapy-induced stress. We recently showed that haploid Kmt2c deletions do indeed enhance HSC self-renewal capacity. However, the deletions do not drive HSCs into cycle; instead, a proliferative stress such as chemotherapy is required to create a context in which Kmt2c deletion convey a selective advantage. We have also identified a mechanism, to explain this phenotype. Kmt2c encodes MLL3, a SET domain protein that binds enhancers and facilitates transcription. We have shown that Kmt2c/MLL3 deletions impairs enhancer recruitment during HSC differentiation, therefore blunting HSC commitment. Our findings suggest that acquired or pre-existing 7q (KMT2C) deletions may select for HSCs that could give rise to MDS/AML in the setting of autologous-transplantation. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that is often used to expedite neutrophil recovery after chemotherapy and to mobilize HSCs for collection and transplantation. We considered the possibility that 7q deletions, and KMT2C deletions in particular, may promote disproportionate mobilization of the mutant HSCs in response to G-CSF. To test this, we treated Kmt2c f/f; Vav1-Cre and Kmt2c f/+; Vav1-Cre mice with G-CSF, and we assessed HSC mobilization to the spleen and bone marrow. A far greater proportion of HSCs with heterozygous and homozygous Kmt2c deletions mobilized in response to G-CSF, relative to wild type HSCs. Kmt2c deletion also enhanced colony forming unit frequency in the peripheral blood after G-CSF treatment. Total body HSC numbers did not change in the body after G-CSF treatment on any genetic background, indicating that Kmt2c deletions enhanced HSC mobilization in response to G-CSF rather than self-renewal. To more faithfully recapitulate clinical conditions, we used Fgd5-CreER to delete a single Kmt2c allele in only a minority of HSCs. We then tested whether the mutant HSCs mobilized more efficiently than wild type HSCs. Surprisingly, Kmt2c deletions did not enhance HSC mobilization in this context. This raised the question of whether Kmt2c deletion in a non-HSC population could promote HSC mobilization in the Kmt2c f/+; Vav1-Cre mice. Indeed, analysis of mice chimeric for wild type and Kmt2c f/+; Vav1-Cre bone marrow suggested that Kmt2c non-cell autonomously regulates HSC mobilization. Finally, Kmt2c deletions did not enhance mobilization following exposure to plerixafor, a CXCR4 antagonist that acts directly on HSCs to promote mobilization rather than indirectly via monocyte populations, as occurs with G-CSF. Additional studies are needed to elucidate the mechanism by which Kmt2c non-cell autonomously regulates HSC mobilization. Our findings provide reassurance that, in a clinical setting, rare KMT2C-mutant HSCs will not disproportionately mobilize prior to apheresis. Furthermore, the data suggest that transient inhibition of MLL3, or its targets, may enhance HSC mobilization and negate selective advantages that 7q-deleted HSCs may acquire after chemotherapy treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2569-2569
Author(s):  
Matthew Loberg ◽  
Rebecca Bell ◽  
Tim Stearns ◽  
Leslie Goodwin ◽  
Kira Young ◽  
...  

Abstract The clinical significance of clonal hematopoiesis (CHIP or ARCH) remains a barrier to predicting the risk of hematologic malignancy. DNMT3A is a de novo DNA methyltransferase frequently mutated in clonal hematopoiesis, myelodysplastic syndrome and acute myeloid leukemia. Loss of or mutation in DNMT3A has been demonstrated to enhance self-renewal of hematopoietic stem cells (HSCs), suggesting that this is the predominant cell population driving clonal hematopoiesis. How DNMT3A-mutant cells become at risk for transformation is unclear, in part due to our limited understanding of how DNMT3A mutation confers a selective advantage and the cooperating mechanisms required for progression to MDS or AML. To address this gap in knowledge, we generated a cre-inducible Dnmt3a-LSL-R878H mouse model (representing the DNMT3A-R882H mutation commonly found in human AML), in which wild-type Dnmt3a expression is preserved prior to recombination. Heterozygous Dnmt3aR878H mice exhibit an expansion in both HSCs and multipotent progenitor (MPP) cell subsets with distinct kinetics. Transcriptional profiling of sorted HSC and MPP populations by RNA-seq revealed distinct transcriptional signatures indicating that different mechanisms underlie expansion of Dnmt3aR878H/+ HSCs and MPPs. Dnmt3a-mutant HSCs exhibit downregulation of genes important for differentiation, while Dnmt3a-mutant MPPs exhibit upregulation of genes associated with stem cell self-renewal, including Jam2 and Ryk. Functionally, we observe that Dnmt3a-mutant MPPs have enhanced serial replating capacity in in vitro colony assays. These data suggest that mutation in DNMT3A may cause clonal hematopoietic expansion through distinct mechanisms dependent on the cell-of-origin which incurs this mutation. To determine whether clonal hematopoiesis driven by Dnmt3aR878H/+ was sufficient to predispose to a hematologic malignancy, we generated an independent, Flp-inducible Npm1-FSF-cA mouse model (representing the NPM1cA mutation commonly found in human AML), in which wild-type Npm1 expression is preserved prior to recombination. Inducing Npm1cA mutation in hematopoietic stem and progenitor cells carrying Dnmt3aR878H caused development of a fully penetrant myeloproliferative disorder upon transplant into recipient mice. Transplantation of these cells into secondary recipient mice led to a fully penetrant AML with accelerated disease kinetics compared to primary transplant recipients. These data suggest that the combination of DNMT3A mutation followed by NPM1 mutation is sufficient to cause AML. In summary, this study reveals a novel cell context-specificity of how DNMT3A mutation confers a selective advantage and demonstrates that NPM1 mutation can cooperate with DNMT3A mutation to cause AML. This work has implications for predicting individuals at risk of progression from clonal hematopoiesis to AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 260-260 ◽  
Author(s):  
Sisi Chen ◽  
Hao Yu ◽  
Michihiro Kobayashi ◽  
Rui Gao ◽  
H. Scott Boswell ◽  
...  

Abstract The tumor suppressor p53 is a critical regulator of hematopoietic stem cell (HSC) behavior and we demonstrated that p53 maintains HSC quiescence and regulates HSC response to irradiation (Liu et al., Cell Stem Cell, 2009).While TP53 mutations are less common in acute myeloid leukemia (5 to 8%) than in solid tumors (50%), they are associated with poor prognosis and abnormal cytogenetics, especially abnormalities in chromosomes 5 and 7. These mutations may abolish some but not necessarily all of the functions of p53 in regulating stem cell behavior. Therefore, this aspect of p53 function needs further investigation. To define the role of mutant p53 in the pathogenesis of AML, we introduced 9 hot-spot p53 mutants identified in AML patients, including p53R248W, p53R273H and p53Y220C, into wild type hematopoietic cells using retrovirus-mediated transduction and investigated the role of these p53 mutants in regulating HSC self-renewal. We found that hematopoietic cells expressing p53R248W, p53Y220C or p53R273H show enhanced repopulating potential 16 weeks following transplantation. As codon 248 of the p53 protein is most frequently mutated in AML, we decided to investigate the role of p53R248W mutant in HSCs by using the humanized knock-in mice of p53R248W. In p53 knockout mice, there is a dramatic increase of HSCs (CD48-CD150+Lin-Sca1+c-Kit+ cells); however,we found thatboth wild type andp53R248W mice have similar number of HSCs. While wild type p53 maintains HSC quiescence, expression of p53R248W in HSCs (CD48-CD150+LSKs) does not affect their quiescent state. Asp53R248W does not appear to affect HSC frequency and quiescence, it is not a loss-of-function mutant. We also used bone marrow cells isolated from both wild type and p53R248W mice to perform the serial replating assays and found that expressing p53R248W from the endogenous Trp53 promoter enhances the replating potential of hematopoietic cells. Moreover, we performed serial bone marrow repopulation (BMT) assays and found that the repopulating ability of p53R248W cells was significantly higher than that of the wild type cells in both primary and secondary BMT assays, demonstrating that the p53R248W mutant enhances HSC self-renewal in vivo. Furthermore, we observed that HSCs expressing p53R248W are resistant to genotoxic stress induced by irradiation and the p53R248W mice show extended survival following sub-lethal dose of total body irradiation. Ample data indicate that mutant p53 proteins not only lose their tumor suppressive functions, but also gain new abilities that promote tumorigenesis. To understand how mutant p53 enhances HSC self-renewal, we performed gene expression profiling assays by using HSCs isolated from wild type and p53R248W mice. We also utilized Ingenuity Pathway analysis software to group putative mutant p53 target genes into different pathways. While we did not observe change in the expression of p53 target genes in p53R248W HSCs, several pathways that are important for leukemogenesis, including epigenetic and DNA damage repair pathways, are altered in HSCs expressing p53R248W, demonstrating that p53R248W is a gain-of-function mutant. Given that TP53 mutations are correlated with poor prognosis, pharmacological inhibition of mutant p53 may be a promising therapeutic strategy for AML patients with TP53 mutations. Small molecule PRIMA-1 has been shown to restore wild-type conformation to some mutant p53 proteins and induce apoptosis in human tumor cells. We found that hematopoietic cells expressing mutant p53 are sensitive to PRIMA-1 treatment and undergo p53-dependent apoptosis. Furthermore, we observed that PRIMA-1 inhibits the growth of primary human AML cells with TP53 mutation in a dosage-dependent manner. Taken together, we demonstrated that gain-of-function mutant p53 enhances hematopoietic stem cell self-renewal through regulating epigenetic and DNA damage repair pathways. Our data also suggest that pharmacological inhibition of mutant p53 may sensitize the drug-resistant leukemia stem cells (LSCs) to chemotherapy and improves leukemia treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3711-3711
Author(s):  
Ran Chen ◽  
Theresa O. Owuor ◽  
Riddhi M Patel ◽  
Emily Casey ◽  
Jeffrey A. Magee

Under normal homeostatic conditions, adult hematopoietic stem cells (HSCs) are usually quiescent. Hematopoietic stress, such as blood loss, infection, inflammation, or chemotherapy, can drive HSCs into cycle. When adult HSCs divide multiple times, they lose self-renewal capacity. Inflammatory cytokines, such as interleukin-1 (IL-1), can accelerate the loss of HSC self-renewal capacity by activating PU.1 and promoting myeloid commitment. This raises the question of whether intrinsic tumor suppressor genes can modulate sensitivity to inflammatory cytokines, and whether loss of these tumor suppressors can allow HSCs to evade commitment programs that would otherwise limit self-renewal capacity. The KMT2C tumor suppressor is located on chromosome 7q within a region that is frequently deleted in myelodsplastic syndrome (MDS) and therapy-related acute myeloid leukemia (AML). It encodes MLL3, a histone methyltransferase that activates enhancer elements and promotes transcription. Haploid KMT2C deletion has previously been shown to activate self-renewal programs and accelerate AML formation. This raised the question of whether KMT2C/MLL3 regulates normal HSC self-renewal and whether KMT2C deletion conveys a selective advantage to HSCs in contexts that would otherwise deplete the HSC pool. By protecting HSCs from exhaustion, KMT2C deletions may indirectly facilitate 7q-deficient MDS/AML. To understand whether and how Kmt2c regulates HSC self-renewal, we developed novel germline and conditional Kmt2c knockout mouse alleles. Mono- and bi-allelic Kmt2c deletions led to a modest increase in adult HSC numbers and a significant reduction in committed hematopoietic progenitors (HPCs). Kmt2c deletions markedly enhanced HSC self-renewal capacity, but HSC proliferation rates were not altered. To mimic conditions that lead to therapy-related AML, we deleted a single Kmt2c allele in a minority of HSCs. We then tested whether the Kmt2c-deleted HSC population expanded, relative to wild type HSCs, under native and stressed conditions. Under native conditions, the percentage of Kmt2c-heterozygous HSCs remained stable. However, after several cycles of chemotherapy, the Kmt2c mutant HSCs predominated within the marrow. In mechanistic studies, RNA-sequencing showed that Kmt2c-deficient HSCs expressed genes associated with innate immune signaling, including the receptor for interleukin-1 (IL1R), at lower levels than wild type HSCs. This suggested that Kmt2c mutations might sustain self-renewal capacity in multiply divided HSCs by dampening IL-1 driven myeloid commitment. In support of this hypothesis, Kmt2c-deficient HSCs retained multilineage potential when they were cultured with IL-1, and they failed to activate JNK and p38 upon exposure to IL-1. Altogether, our data suggest a mechanism to explain how KMT2C deletions, in the context of larger 7q deletions, may promote therapy related MDS/AML. When HSCs acquire a KMT2C deletion, they can then escape IL-1-mediated exhaustion when they are driven into cycle by chemotherapy or other stressors. In lieu of chemotherapy-induced stress, the same clones may remain relatively indolent. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 53 ◽  
pp. S109-S110
Author(s):  
Xiaofang Wang ◽  
Fang Dong ◽  
Sen Zhang ◽  
Wanzhu Yang ◽  
Zhao Wang ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 733-733 ◽  
Author(s):  
Ashish R. Kumar ◽  
Wendy A. Hudson ◽  
Weili Chen ◽  
Rodney A. Staggs ◽  
Anne-Francoise Lamblin ◽  
...  

Abstract In order to understand the pathophysiology of leukemia, we need to study the effects of leukemic oncogenes on the rare hematopoietic stem and progenitor cells. We investigated the self-renewal capabilities of the various hematopoietic cell types derived from Mll-AF9 knock-in mice. We used the murine knock-in model since it offers the advantage of a single copy of the Mll-fusion gene under the control of the endogenous promoter present in every hematopoietic stem/progenitor cell. In methylcellulose cultures, we compared myeloid colony formation of Mll-AF9 cells to wild type progenitor populations over three generations of plating. In the first generation of plating, the Mll-AF9 common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs) formed more colonies than the hematopoietic stem cells (HSCs) and common lymphoid progenitors (CLPs). However, at the third generation of plating, colony numbers formed by Mll-AF9 HSCs and CLPs were significantly greater than those formed by CMPs and GMPs. By the third generation only occasional colonies were found in the wild type groups. These results demonstrate that while Mll-AF9 led to an increase in self-renewal of all 4 cell types studied, these effects were more pronounced in HSCs and CLPs. To identify the downstream genes that mediate the growth deregulatory effects of Mll-AF9, we compared gene expression profiles of Mll-AF9 derived cells to their wild type counterparts. To assess gene expression levels, we extracted RNA from wild type and Mll-AF9 HSCs, CLPs, CMPs and GMPs. We then amplified and labeled the RNA for analysis by Affymetrix murine 430 2.0 genome arrays. In an unsupervised analysis, the various Mll-AF9 cells clustered with their corresponding wild type counterparts, indicating that the expression of most genes was not significantly altered by Mll-AF9. To identify the genes that are differentially expressed in the Mll-AF9 derived cells, we performed a two-way ANOVA (with the genotype and cell type as the two variables) allowing for a false discovery rate of 10%. In this analysis, we found that 76 genes were up-regulated in all Mll-AF9 progenitor cells compared to their wild-type counterparts. This list included known targets of Mll-fusion proteins Hoxa5, Hoxa7, Hoxa9 and Hoxa10. Also included were Evi1 and Mef2c, two genes that have been implicated in promoting enhanced self-renewal of murine hematopoietic cells. Importantly, in wild type mice, these 6 genes were expressed at higher levels in HSCs and CLPs compared to CMPs and GMPs (average 3–25 fold). While we observed an average 2–10 fold increase in expression of these genes in all Mll-AF9 cell types compared to their respective wild type controls, the expression level was 3–8 fold higher in Mll-AF9 HSCs and CLPs compared to CMPs and GMPs. Thus, the expression of genes known to be intrinsically related to self-renewal is further enhanced as a result of the Mll-AF9 fusion gene. In conclusion, while activation of the Mll-AF9 genetic program and the resulting enhanced self-renewal occurs in all 4 cell types studied, these effects are greatest in HSCs and CLPs. Thus, HSCs and CLPs are likely to be more efficient than CMPs and GMPs in producing cellular expansion and targets for cooperating mutations resulting in leukemia.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2330-2330
Author(s):  
Stefanie Kreutmair ◽  
Anna Lena Illert ◽  
Rouzanna Istvanffy ◽  
Melanie Sickinger ◽  
Christina Eckl ◽  
...  

Abstract Abstract 2330 Hematopoietic stem cells (HSCs) are characterized by their ability to self-renewal and multilineage differentiation. Since mostly HSCs exist in a quiescent state re-entry into cell cycle is essential for their regeneration and differentiation and the expression of numerous cell cycle regulators must be tightly controlled. We previously characterized NIPA (Nuclear Interaction Partner of ALK) as a F-Box protein that defines an oscillating ubiquitin E3 ligase targeting nuclear cyclin B1 in interphase thus contributing to the timing of mitotic entry. To examine the function of NIPA on vivo, we generated NIPA deficient animals, which are viable but sterile due to a defect in recombination and testis stem cell maintenance. To further characterize the role of NIPA in stem cell maintenance and self-renewal we investigated hematopoiesis in NIPA deficient animals. Peripheral blood counts taken at different ages revealed no apparent difference between NIPA knockout and wild type mice in numbers and differentiation. In contrast, looking at the hematopoietic stem cell pool, FACS analyses of bone marrow showed significantly decreased numbers of Lin-Sca1+cKit+ (LSK) cells in NIPA deficient animals, where LSKs were reduced to 40% of wild type littermates (p=0,0171). This effect was only apparent in older animals, where physiologically higher LSK numbers have to compensate for the exhaustion of the stem cell pool. Additionally, older NIPA deficient mice have only half the amount of multi myeloid progenitors (MMPs) in contrast to wild type animals. To examine efficient activation of stem cells to self-renew in response to myeloid depression, we treated young and old mice with the cytotoxic drug (5-FU) four days before bone marrow harvest. As expected, 5-FU activated hematopoietic progenitors in wild type animals, whereas NIPA deficient progenitors failed to compensate to 5-FU depression, e.g. LSKs of NIPA knockout mice were reduced to 50% of wild type levels (p<0.001), CD150+CD34+ Nipa deficient cells to 20% of wild type levels (p<0.0001). Interestingly, these effects were seen in all NIPA deficient animals independent of age, allowing us to trigger the self-renewal phenotype by activating the hematopoietic stem cell pool. Using competitive bone marrow transplantation assays, CD45.2 positive NIPA deficient or NIPA wild type bone marrow cells were mixed with CD45.1 positive wild type bone marrow cells and transplanted into lethally irradiated CD45.2 positive recipient mice. Thirty days after transplantation, FACS analysis of peripheral blood and bone marrow showed reduced numbers of NIPA knockout cells in comparison to NIPA wild type bone marrow recipient mice. This result was even more severe with aging of transplanted mice, where NIPA deficient cells were reduced to less than 10% of the level of wild type cells in bone marrow of sacrificed mice 6 months after transplantation, pointing to a profound defect in repopulation capacity of NIPA deficient HSCs. Taken together our results demonstrate a unique and critical role of NIPA in regulating the primitive hematopoietic compartment as a regulator of self-renewal, cycle capacity and HSC expansion. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 859-859 ◽  
Author(s):  
Chen Zhao ◽  
Yan Xiu ◽  
John M Ashton ◽  
Lianping Xing ◽  
Yoshikazu Morita ◽  
...  

Abstract Abstract 859 RelB and NF-kB2 are the main effectors of NF-kB non-canonical signaling and play critical roles in many physiological processes. However, their role in hematopoietic stem/progenitor cell (HSPC) maintenance has not been characterized. To investigate this, we generated RelB/NF-kB2 double-knockout (dKO) mice and found that dKO HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Transplantation of wild-type bone marrow cells into dKO mice to assess the role of the dKO microenvironment showed that wild-type HSPCs cycled more rapidly, were more abundant, and had developmental aberrancies: increased myeloid and decreased lymphoid lineages, similar to dKO HSPCs. Notably, when these wild-type cells were returned to normal hosts, these phenotypic changes were reversed, indicating a potent but transient phenotype conferred by the dKO microenvironment. However, dKO bone marrow stromal cell numbers were reduced, and bone-lining niche cells supported less HSPC expansion than controls. Further, increased dKO HSPC proliferation was associated with impaired expression of niche adhesion molecules by bone-lining cells and increased inflammatory cytokine expression by bone marrow cells. Thus, RelB/NF-kB2 signaling positively and intrinsically regulates HSPC self-renewal and maintains stromal/osteoblastic niches and negatively and extrinsically regulates HSPC expansion and lineage commitment through the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 44-44
Author(s):  
Sung-Uk Lee ◽  
Manami Maeda ◽  
Anne E. Wilson ◽  
Min Li ◽  
Yuichi Ishikawa ◽  
...  

Abstract Abstract 44 Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in embryos and are critical regulators for lymphoid lineage fate determination. However, their role in adult HSC function is currently under debate. LRF (Leukemia/ Lymphoma Related Factor, also known as Zbtb7a/pokemon) is a transcriptional factor that plays a key role in lymphoid lineage fate determination, erythroid terminal differentiation and germinal center B cell proliferation. LRF loss at HSC/progenitor levels led to excessive differentiation of HSCs into T cells in the BM at the expense of B cell development. Concomitantly, the numbers of LT-HSCs (CD34−CD150+CD48−Flt3−IL7Rα−Lin−Sca-1+c-Kit+) were significantly reduced in LRFflox/floxMx1-Cre+ mice one month after LRF inactivation. Reduced LT-HSC numbers in LRFflox/floxMx1-Cre+ mice were almost completely rescued by the genetic loss of Notch1 (LRFflox/floxNotch1flox/floxMx1-Cre+) or anti-DLL4 antibody treatment, suggesting that the reduction in LT-HSCs numbers was caused by Notch1/DLL4-mediated mechanisms. Furthermore, immunohistochemical (IHC) analysis demonstrated a dramatic increase in DLL4 protein levels in BM hematopoietic cells in LRFflox/floxMx1-Cre+ mice, although the precise mechanisms for this remain unknown. To determine LRF function in HSCs, highly enriched 50 LT-HSCs were transplanted to lethally-irradiated CD45.1+ congenic recipient mice and contributions of donor-derived cells (CD45.2+) in recipients' peripheral blood (PB) had been examined over 4 months after transplant. Compared to wild-type (WT) cells, LRF-deficient LT-HSCs barely contributed to lymphoid development (both T and B) in the recipients, while myeloid reconstitutions were largely unaffected. Using antibodies raised against the ligand binding domains of Notch1 and Notch2, we found that Notch proteins are expressed in a gradient at the most primitive CD34−LT-HSCs in adult BM. The CD34−LT-HSCs expressing Notch1 at high levels (Notch1high LT-HSCs) were susceptible to LRF inactivation and disappeared upon LRF inactivation. Only Notch1low LT-HSCs remained in the BM of LRFflox/floxMx1-Cre+ mice after pIpC injections. To elucidate the qualitative difference between Notch1high and Notch1low LT-HSCs in normal hematopoiesis, we analyzed cell cycle status, gene expression profiles and in vitro colony forming capacities at the single cell level. We found that the Notch1high LT-HSCs were in more active cell cycle as compared to Notch1low fractions. Single cell q-PCR analysis demonstrated Notch1low LT-HSCs express stem cell-related genes (e.g. Gata2, Mpl and Runx1) at higher levels compared to Notch1high LT-HSCs. Furthermore, Notch1high LT-HSCs reconstituted hematopoietic system more quickly compared to the Notch1low cells when transplanted to lethally-irradiated recipient mice. There is no difference in colony forming capacities between two LT-HSC subtypes. Since Notch1lowLT-HSCs gave rise to Notch1highLT-HSCs (and vice versa) in recipients' BM, these two LT-HSC fractions are likely to be interchangeable. Taken together, our data suggest that the LT-HSCs expressing Notch1 at high levels (Notch1high LT-HSCs) are “lymphoid-primed”, which are susceptible to LRF loss. We propose a model in which LRF acts as a safeguard to prevent lymphoid-primed LT-HSCs from excessive T-cell differentiation in the BM micro-environment. Our study sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and lymphoid differentiation. Disclosures: Yan: Genentech Inc.: Employment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4792-4792
Author(s):  
Wenhuo Hu ◽  
James Dooley ◽  
Luisa Cimmino ◽  
Adrian Liston ◽  
Christopher Y. Park

Abstract MicroRNAs are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs) or blocking protein translation. Expression profiling studies has identified miRNAs that regulate normal and malignant hematopoietic stem cell function. Our previous studies showed that ectopic expression of miR-29a in mouse bone marrow cells induced a myeloproliferative disorder that progressed to acute myeloid leukemia (AML). Over-expression of miR-29b in AML cell lines has been reported to induce apoptosis by negatively regulating Dnmt3a. We recently found that miR-29a positively regulates hematopoietic stem cell (HSC) self-renewal and proliferation using a knockout mouse model of miR-29ab. miR-29a null mice contained significantly lower HSC numbers and miR-29a null HSCs exhibited markedly decreased reconstitution ability in both competitive and non-competitive transplantation assays. To investigate the mechanism of miR-29a action, we performed transcriptomal profiling of miR-29a null HSCs and found that miR-29a null HSCs exhibit a gene expression pattern more similar to wild-type committed progenitors than wild-type HSCs. We identified Dnmt3a as one dysregulated miR-29a target as showing increased expression in miR-29a null HSCs, and haplodeficiency of Dnmt3a partly restores miR-29a deficient HSC function. In order to test the requirement for miR-29a in myeloid leukemogenesis, we transduced miR-29a deficient Lin-c-Kit+Sca-1+ (LSK) cells with the oncogenic MLL-AF9 fusion gene, and found that the development of AML from these cells was markedly delayed. We found that Meis1, Ccna2, Hoxa5 and Hoxa9 transcripts were significantly downregulated in miR-29a null LSK cells compared to WT LSK cells, but they were similarly induced in MLL-AF9 transformed c-Kit+Mac-1+ cells. To investigate whether the epigenetic dysregulation resulting from miR-29a deletion may underlie this transformation-resistant phenotype, we examined the distribution of the active epigenetic mark, H3K79me2, in c-Kit+Mac-1+ miR-29a null cells using a ChIP-Seq assay. After analyzing H3K39me2 peaks using model-based analysis of ChIP-Seq, we identified 4281 and 3649 genes associated with this active epigenetic mark using a duplicated ChIP-Seq analysis, with an overlap of 3164 genes (66.39%). Using public available ChIP-Seq data, we compared our results with the genes associated with the H3K79me2 mark in normal immature LSK cells (9282 genes), granulocyte-macrophage progenitors (GMPs, 8556 genes), and MLL-AF9 transformed GMP cells (L-GMP, 8578 genes), and found 4234, 4111, 4046, and 4766 genes were also identified have an active H3K79me2 mark in MLL-AF9 transformed miR-29a null cells. These data indicate that miR-29a loss inactivates a large group of genes activated by the MLL-AF9 oncogene. We also found that 379 genes were associated with H3K79me2 peaks in both normal LSK and MLL-AF9 transformed miR-29a null c-Kit+Mac-1+ cells, but were absent of this epigenetic marker in L-GMP, suggesting that these genes confer self-renewal and proliferation capacities to normal HSCs. In addition, suppression of these genes are important in leukemic transformation by MLL-AF9, and finally the reactivation of these genes in miR-29a null cells compromises the leukemogenesis ability of MLL-AF9. Interestingly, out of these 379 genes, we were able to identify 18 genes that were potential miR-29a targets including Akt3, Map4k4, Dnmt3a, et al. This suggests the direct and indirect effects from miR-29a in regulating its target gene networks at transcriptional and post-transcriptional levels. Our studies found miR-29a is essential in maintaining HSC function and loss of miR-29a abrogate the leukemogenesis capacity of MLL-AF9. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document