scholarly journals Altered DNA methylation in ion transport and immune signalling genes is associated with severity in Pancreatic Ductal Adenocarcinoma

2021 ◽  
Author(s):  
Ankita Chatterjee ◽  
Akash Bararia ◽  
Debopriyo Ganguly ◽  
Paromita Roy ◽  
Sudeep Banerjee ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading cancers worldwide and has a poor survival, with a relative five-year survival rate of only 8.5%. In this study we investigated epigenetic marks associated with PDAC severity and prognosis, through studying alterations in DNA methylation patterns. Methods: DNA methylome for tumor and adjacent normal tissue samples from PDAC patients (n=7) were generated using Illumina 450K bead chips. Differentially methylated positions (DMPs) were identified with |delta beta| > 0.2 and p-value<0.01 by comparing tumors with the adjacent normal tissues. Validation of differential methylation and associated gene expression at selected genes was carried out in an independent cohort PDAC patient. Results: We identified 76 DMPs in PDAC patients that mapped to 43 genes. Among them, 44.7% (n=34) were hypo-methylated and 55.3% (n=42) were hyper-methylated DMPs in cancer samples. The trends of change in methylation at these 76 DMPs from well to moderate were like that from moderate to poorly differentiated cancer samples. The gradual trend in differential methylation was observed both in our cohort and the TCGA-PAAD cohort, suggesting methylation marks can serve as early indicators of disease pathology. Altered promoter methylation, which may affect gene expression, was observed for transcription regulators (BHLHE23, GSC2, FOXE1 and TWIST1), gated ion channels (KCNA6, and CACNB2), tumor suppressors (RASSF1, SPRED2, and NPY) and genes functioning in interferon signalling (SIGIRR, MX2, and OAS2). We also have compared the TCGA-PAAD dataset with normal pancreatic tissue data from GTEx V8 dataset leading to a confluent observation. Conclusions: We reported the first study on methylome in PDAC tumors from patients in India. We identified altered DNA methylation associated with increasing severity in PDAC among some genes like SIGIRR, MX2 along with other previously reported loci. We also concluded a confluence in our observation when comparing the TCGA-PAAD dataset with GTEx V8 dataset.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Rui Xu ◽  
Qiuyan Xu ◽  
Guanglei Huang ◽  
Xinhai Yin ◽  
Jianguo Zhu ◽  
...  

Background. Pancreatic ductal adenocarcinoma (PDAC) remains one of the most fatal malignancies due to its high morbidity and mortality. DNA methylation exerts a vital part in the development of PDAC. However, a mechanistic role of mutual interactions between DNA methylation and mRNA as epigenetic regulators on transcriptomic alterations and its correlation with clinical outcomes such as survival have remained largely uncovered in cancer. Therefore, elucidation of aberrant epigenetic alteration in the development of PDAC is an urgent problem to be solved. In this work, we conduct an integrative epigenetic analysis of PDAC to identify aberrant DNA methylation-driven cancer genes during the occurrence of cancer. Methods. DNA methylation matrix and mRNA profile were obtained from the TCGA database. The integration of methylation and gene expression datasets was analyzed using an R package MethylMix. The genes with hypomethylation/hypermethylation were further validated in the Kaplan–Meier analysis. The correlation analysis of gene expression and aberrant DNA methylation was also conducted. We performed a pathway analysis on aberrant DNG methylation genes identified by MethylMix criteria using ConsensusPathDB. Results. 188 patients with both methylation data and mRNA data were considered eligible. A mixture model was constructed, and differential methylation genes in normal and tumor groups using the Wilcoxon rank test was performed. With the inclusion criteria, 95 differential methylation genes were detected. Among these genes, 74 hypermethylation and 21 hypomethylation genes were found. The pathway analysis revealed an increase in hypermethylation of genes involved in ATP-sensitive potassium channels, Robo4, and VEGF signaling pathways crosstalk, and generic transcription pathway. Conclusion. Integrated analysis of the aberrant epigenetic alteration in pancreatic ductal adenocarcinoma indicated that differentially methylated genes could play a vital role in the occurrence of PDAC by bioinformatics analysis. The present work can help clinicians to elaborate on the function of differentially methylated expressed genes and pathways in PDAC. CDO1, GJD2, ID4, NOL4, PAX6, TRIM58, and ZNF382 might act as aberrantly DNA-methylated biomarkers for early screening and therapy of PDAC in the future.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1856
Author(s):  
Maria Dobre ◽  
Vlad Herlea ◽  
Cătălina Vlăduţ ◽  
Mihai Ciocîrlan ◽  
Vasile Daniel Balaban ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC), the most prevalent neoplastic lethal pancreatic disease, has a poor prognosis and an increasing incidence. The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is considered to be a contributing factor to the progression, metastasis, and therapy resistance of PDAC. Currently available treatment options for PDAC are limited, but microRNAs (miRNAs) may represent a new therapeutic strategy for targeting genes involved in the IGF-1R signaling pathway. Method: We investigated the expression levels of 21 miRNAs involved in the IGF-1R signaling pathway in pancreatic tissue from 38 patients with PDAC and 11 controls (five patients with chronic pancreatitis and six patients with normal pancreatic tissue). Results: We found 19 differentially expressed miRNAs between the PDAC cases and the controls. In particular, miR-100-5p, miR-145-5p, miR-29c-3p, miR-9-5p, and miR-195-5p were exclusively downregulated in PDAC tissue but not in chronic pancreatitis or normal pancreatic tissues; both control types presented similar levels. We also identified miR-29a-3p, miR-29b-3p, and miR-7-5p as downregulated miRNAs in PDAC tissues as compared with normal tissues but not with pancreatitis tissues. Conclusions: We identified a panel of miRNAs that could represent putative therapeutic targets for the development of new miRNA-based therapies for PDAC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shajedul Islam ◽  
Takao Kitagawa ◽  
Byron Baron ◽  
Yoshihiro Abiko ◽  
Itsuo Chiba ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer with an abysmal prognosis rate over the last few decades. Early diagnosis and prevention could effectively combat this malignancy. Therefore, it is crucial to discover potential biomarkers to identify asymptomatic premalignant or early malignant tumors of PDAC. Gene expression analysis is a powerful technique to identify candidate biomarkers involved in disease progression. In the present study, five independent gene expression datasets, including 321 PDAC tissues and 208 adjacent non-cancerous tissue samples, were subjected to statistical and bioinformatics analysis. A total of 20 differentially expressed genes (DEGs) were identified in PDAC tissues compared to non-cancerous tissue samples. Gene ontology and pathway enrichment analysis showed that DEGs were mainly enriched in extracellular matrix (ECM), cell adhesion, ECM–receptor interaction, and focal adhesion signaling. The protein–protein interaction network was constructed, and the hub genes were evaluated. Collagen type XII alpha 1 chain (COL12A1), fibronectin 1 (FN1), integrin subunit alpha 2 (ITGA2), laminin subunit beta 3 (LAMB3), laminin subunit gamma 2 (LAMC2), thrombospondin 2 (THBS2), and versican (VCAN) were identified as hub genes. The correlation analysis revealed that identified hub genes were significantly interconnected. Wherein COL12A1, FN1, ITGA2, LAMB3, LAMC2, and THBS2 were significantly associated with PDAC pathological stages. The Kaplan–Meier survival plots revealed that ITGA2, LAMB3, and LAMC2 expression were inversely correlated with a prolonged patient survival period. Furthermore, the Human Protein Atlas database was used to validate the expression and cellular origins of hub genes encoded proteins. The protein expression of hub genes was higher in pancreatic cancer tissue than in normal pancreatic tissue samples, wherein ITGA2, LAMB3, and LAMC2 were exclusively expressed in pancreatic cancer cells. Pancreatic cancer cell-specific expression of these three proteins may play pleiotropic roles in cancer progression. Our results collectively suggest that ITGA2, LAMB3, and LAMC2 could provide deep insights into pancreatic carcinogenesis molecular mechanisms and provide attractive therapeutic targets.


2021 ◽  
Author(s):  
Chi Tonglien Viet ◽  
Xinyu Zhang ◽  
Ke Xu ◽  
Gary Yu ◽  
Kesava Asam ◽  
...  

Abstract Background Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. Methods Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. Results There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1,000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). Conclusions Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.


2021 ◽  
Author(s):  
Chi Tonglien Viet ◽  
Xinyu Zhang ◽  
Ke Xu ◽  
Gary Yu ◽  
Kesava Asam ◽  
...  

Abstract Background Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. Methods Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. Results There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1,000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). Conclusions Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.


2020 ◽  
Author(s):  
Zhiming Zhao ◽  
Mengyang Li ◽  
Xianglong Tan ◽  
Rong Liu

Abstract Background Aberrant DNA methylation is often involved in carcinogenesis. This study is designed to establish an epigenetic signature to predict overall survival (OS) of pancreatic ductal adenocarcinoma (PDAC). Methods DNA methylation and RNA-seq data of PDAC patients were downloaded from the Cancer Genome Atlas database, Genotype-Tissue Expression (GTEx), and International Cancer Genome Consortium (ICGC) database. Methylation-related differentially expressed genes (DEGs) were identified using an R package MethylMix. Epigenetic signature and nomogram were established by the LASSO and multivariate Cox regression analysis, respectively. In addition, a joint survival analysis of the gene expression and methylation was performed to identify potential prognostic factors for patients with PDAC. Results There were a total of 56 methylation-related DEGs by MethylMix criteria. After LASSO Cox regression analysis, we developed an epigenetic signature composed of five genes according to their methylation level. The signature was able to divide patients into high-risk and low-risk groups, and the OS between the high-and low-risk groups was more significantly different in both training and validation cohort. The signature is independent of clinicopathological variables and indicated better predictive power. Moreover, we developed a novel prognostic nomogram that combines risk scores with three clinicopathological factors. The joint survival analysis of gene expression and methylation revealed that 24 genes could be independent prognostic factors for OS in PDAC. Conclusions The qualitative signature and nomogram that predict OS at the individualized level and guide therapy for patients with PDAC.


2021 ◽  
Author(s):  
Shajedul Islam ◽  
Takao Kitagawa ◽  
Byron Baron ◽  
Yoshihiro Abiko ◽  
Itsuo Chiba ◽  
...  

Abstract Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer with an abysmal prognosis rate over the last few decades. Early diagnosis and prevention could effectively combat this malignancy. Therefore, it is crucial to discover potential biomarkers to identify asymptomatic premalignant or early malignant tumors of PDAC. Gene expression analysis is a powerful technique to identify candidate biomarkers involved in disease progression. In the present study, five independent gene expression datasets, including 321 PDAC tissues and 208 adjacent non-cancerous tissue samples, were subjected to statistical and bioinformatics analysis. A total of 20 differentially expressed genes (DEGs) were identified in PDAC tissues compared to non-cancerous tissue samples. Gene ontology and pathway enrichment analysis showed that DEGs were mainly enriched in extracellular matrix (ECM), cell adhesion, ECM-receptor interaction, and focal adhesion signaling. The protein protein interaction network was constructed, and the hub genes were evaluated. Collagen type XII alpha 1 chain (COL12A1), fibronectin 1 (FN1), integrin subunit alpha 2 (ITGA2), laminin subunit beta 3 (LAMB3), laminin subunit gamma 2 (LAMC2), thrombospondin 2 (THBS2), and versican (VCAN) were identified as hub genes. The correlation analysis revealed that identified hub genes were significantly interconnected. Wherein COL12A1, FN1, ITGA2, LAMB3, LAMC2, and THBS2 were significantly associated with PDAC pathological stages. The Kaplan-Meier survival plots revealed that ITGA2, LAMB3, and LAMC2 expression were inversely correlated with a prolonged patient survival period. Furthermore, the Human Protein Atlas database was used to validate the expression and cellular origins of hub genes encoded proteins. The protein expression of hub genes was higher in pancreatic cancer tissue than in normal pancreatic tissue samples, wherein ITGA2, LAMB3, and LAMC2 were exclusively expressed in pancreatic cancer cells. Pancreatic cancer cell-specific expression of these three proteins may play pleiotropic roles in cancer progression. Our results collectively suggest that ITGA2, LAMB3, and LAMC2 could provide deep insights into pancreatic carcinogenesis molecular mechanisms and provide attractive therapeutic targets.


2021 ◽  
Vol 147 (5) ◽  
pp. 1341-1354
Author(s):  
Yutaka Endo ◽  
Mao Fujimoto ◽  
Nanako Ito ◽  
Yoriko Takahashi ◽  
Minoru Kitago ◽  
...  

AbstractPurposeThe present study was conducted to clarify the clinicopathological impacts of DNA methylation alterations on pancreatic ductal adenocarcinoma (PDAC).MethodsGenome-wide DNA methylation screening was performed using the Infinium HumanMethylation450 BeadChip, and DNA methylation quantification was verified using pyrosequencing. We analyzed fresh-frozen tissues from an initial cohort (17 samples of normal control pancreatic tissue [C] from 17 patients without PDAC, and 34 samples of non-cancerous pancreatic tissue [N] and 82 samples of cancerous tissue [T] both obtained from 82 PDAC patients) and formalin-fixed paraffin-embedded T samples from 34 patients in a validation cohort.ResultsThe DNA methylation profiles of N samples tended to differ from those of C samples, and 91,907 probes showed significant differences in DNA methylation levels between C and T samples. Epigenetic clustering of T samples was significantly correlated with a larger tumor diameter and early recurrence (ER), defined as relapse within 6 months after surgery. Three marker CpG sites, applicable to formalin-fixed paraffin-embedded surgically resected materials regardless of their tumor cell content, were identified for prediction of ER. The sensitivity and specificity for detection of patients belonging to the ER group using a panel combining these three marker CpG sites, including a CpG site in theCDK14gene, were 81.8% and 71.7% and 88.9% and 70.4% in the initial and validation cohorts, respectively.ConclusionThese findings indicate that DNA methylation alterations may have a clinicopathological impact on PDAC. Application of our criteria will ultimately allow prediction of ER after surgery to improve the outcome of PDAC patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imteyaz Ahmad Khan ◽  
Safoora Rashid ◽  
Nidhi Singh ◽  
Sumaira Rashid ◽  
Vishwajeet Singh ◽  
...  

AbstractEarly-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2608-2608
Author(s):  
Claudia Gebhard ◽  
Roger Mulet-Lazaro ◽  
Lucia Schwarzfischer ◽  
Dagmar Glatz ◽  
Margit Nuetzel ◽  
...  

Abstract Acute myeloid leukemia (AML) represents a highly heterogeneous myeloid stem cell disorder classified based on various genetic defects. Besides genetic alterations, epigenetic changes are recognized as an additional mechanism contributing to leukemogenesis, but insight into the latter process remains minor. Using a combination of Methyl-CpG-Immunoprecipitation (MCIp-chip) and MALDI-TOF analysis of bisulfite-treated DNA in a cohort of 196 AML patients we previously demonstrated that (cyto)genetically defined AML subtypes, including CBFB-MYH11, AML-ETO, NPM1-mut, CEBPA-mut or IDH1/2-mut subtypes, express specific DNA-methylation profiles (Gebhard et al, Leukemia, 2018). A fraction of AML patients (5/196) displayed a unique abnormal hypermethylation profile that was completely distinct from any other AML subtype. These patients present immature leukemia (FAB M0, M1) with various chromosomal aberrations but very few mutations (e.g. no IDH1/2, KRAS, DNMT3A) that might explain the CpG island methylator phenotype (CIMP) phenotype. The CIMP patients showed high resemblance with a recently reported CEBPA methylated subgroup (Wouters et al, 2007 and Figueroa et al, 2009), which we confirmed by MCIp-chip and MALDI-TOF analysis. To explore the whole range of epigenetic alterations in the CIMP-AML patients we performed in-depth global DNA methylation and gene expression analyses (MCIp-seq and RNA-seq) in 45 AML and 12 CIMP patients from both studies. Principle component analysis and t-distributed stochastic neighbor embedding (t-SNE) revealed that CIMP patients express a unique DNA-methylation and gene-expression signature that separated them from all other AMLs. We could discriminate promoter methylation from non-promoter methylation by selecting MCIp-seq peaks within 3kb around TSS. Promoter hypermethylation was highly associated with repression of genes (PCC = -0.053, p-value = 0.00075). Hypermethylation of non-promoter regions was more strongly associated with upregulation of genes (PCC = 0.046, p-value = 4.613e-06). Interestingly, differentially methylated regions also showed a positive association with myeloid lineage CTCF binding sites (27% vs 18% expected, p-value < 2.2e-16 in a chi-square test of independence). Methylation of CTCF sites causes loss of CTCF binding, which has been reported to disrupt boundaries between so-called topologically associated domains (TADs), allowing enhancers located in a particular TAD to become accessible to genes in adjacent TADs and affect their transcription. Whether this is the case is under investigation. In this study we particularly focused on the role of hypermethylation of promoters in CIMP-AMLs. Promoters of many transcriptional regulators that are involved in the differentiation of myeloid lineages of which several are frequently mutated in AML were hypermethylated and repressed, including CEBPA, CEBPD, IRF8, GATA2, KLF4, MITF or MAFB. Notably, HMGA2, a critical regulator of myeloid progenitor expansion, exhibited the largest degree of CIMP promoter hypermethylation compared to the other AMLs, accompanied by a reduction in gene expression. Moreover, multiple members of the HOXB family and KLF1 (erythroid differentiation) were methylated and repressed as well. In addition, these patients frequently showed hypermethylation of many chromatin factors (e.g. LMNA, CHD7 or TET2). Hypermethylation of the TET2 promoter could result in a loss of maintenance DNA demethylation and therefore successive hypermethylation at CpG islands. We carried out regulome-capture-bisulfite sequencing on CIMP-AMLs compared to other AML samples and normal blood cell controls and confirmed methylation of the same transcription and chromatin factor promoters. We conclude that these leukemias represent very primitive HSCPs which are blocked in differentiation into multiple hematopoietic lineages, due to the absence of regulators of these lineages. Although the underlying cause for the extreme hypermethylation signature is still subject to ongoing studies, the consequence of promoter hypermethylation is silencing of key lineage regulators causing the differentiation arrest in these cells. We argue that these patients may particularly benefit from therapies that revert DNA methylation. Disclosures Ehninger: Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document