scholarly journals Systematic in vivo interrogation identifies novel enhancers and silencers associated to Atrial Fibrillation

2021 ◽  
Author(s):  
Jesus Victorino ◽  
Isabel Rollan ◽  
Raquel Rouco ◽  
Javier Adan ◽  
Miguel Manzanares

Cis-regulatory elements control gene expression in time and space and their disruption can lead to pathologies. Reporter assays allow the functional validation of enhancers and other regulatory elements, and such assays by means of the generation of transgenic mice provide a powerful tool to study gene regulation in development and disease. However, these experiments are time-consuming and, thus, their performance is very limited. Here, we increase the throughput of in vivo mouse reporter assays by using a piggyBac transposon-based system, and use it to decode the regulatory landscape of atrial fibrillation, a prevalent cardiac arrhythmia. We systematically interrogated ten human loci associated to atrial fibrillation in the search for regulatory elements. We found five new cardiac-specific enhancers and implicated novel genes in arrhythmia through genome editing and three-dimensional chromatin analysis by 4C-seq. Of note, functional dissection of the 7q31 locus identified a bivalent regulatory element in the second intron of the CAV1 gene differentially acting upon four genes. Our system also detected negative regulatory elements thanks to which we identified a ubiquitous silencer in the 16q22 locus that regulates ZFHX3 and can outcompete heart enhancers. Our study characterizes the function of new genetic elements that might be of relevance for the better understanding of gene regulation in cardiac arrhythmias. Thus, we have established a new framework for the efficient dissection of the genetic contribution to common human diseases.

2021 ◽  
Author(s):  
Dohoon Lee ◽  
Jeewon Yang ◽  
Sun Kim

The quantitative characterization of the transcriptional control by histone modifications (HMs) has been challenged by many computational studies, but still most of them exploit only partial aspects of intricate mechanisms involved in gene regulation, leaving a room for improvement. We present Chromoformer, a new transformer-based deep learning architecture that achieves the state-of-the-art performance in the quantitative deciphering of the histone codes of gene regulation. The core essence of Chromoformer architecture lies in the three variants of attention operation, each specialized to model individual hierarchy of three-dimensional (3D) transcriptional regulation including (1) histone codes at core promoters, (2) pairwise interaction between a core promoter and a distal cis-regulatory element mediated by 3D chromatin interactions, and (3) the collective effect of the pairwise cis-regulations. In-depth interpretation of the trained model behavior based on attention scores suggests that Chromoformer adaptively exploits the distant dependencies between HMs associated with transcription initiation and elongation. We also demonstrate that the quantitative kinetics of transcription factories and polycomb group bodies, in which the coordinated gene regulation occurs through spatial sequestration of genes with regulatory elements, can be captured by Chromoformer. Together, our study shows the great power of attention-based deep learning as a versatile modeling approach for the complex epigenetic landscape of gene regulation and highlights its potential as an effective toolkit that facilitates scientific discoveries in computational epigenetics.


2001 ◽  
Vol 15 (5) ◽  
pp. 734-746 ◽  
Author(s):  
Christine C. Quirk ◽  
Kristen L. Lozada ◽  
Ruth A. Keri ◽  
John H. Nilson

Abstract Reproduction depends on regulated expression of the LHβ gene. Tandem copies of regulatory elements that bind early growth response protein 1 (Egr-1) and steroidogenic factor 1 (SF-1) are located in the proximal region of the LHβ promoter and make essential contributions to its activity as well as mediate responsiveness to GnRH. Located between these tandem elements is a single site capable of binding the homeodomain protein Pitx1. From studies that employ overexpression paradigms performed in heterologous cell lines, it appears that Egr-1, SF-1, and Pitx1 interact cooperatively through a mechanism that does not require the binding of Pitx1 to its site. Since the physiological ramifications of these overexpression studies remain unclear, we reassessed the requirement for a Pitx1 element in the promoter of the LHβ gene using homologous cell lines and transgenic mice, both of which obviate the need for overexpression of transcription factors. Our analysis indicated a striking requirement for the Pitx1 regulatory element. When assayed by transient transfection using a gonadotrope-derived cell line (LβT2), an LHβ promoter construct harboring a mutant Pitx1 element displayed attenuated transcriptional activity but retained responsiveness to GnRH. In contrast, analysis of wild-type and mutant expression vectors in transgenic mice indicated that LHβ promoter activity is completely dependent on the presence of a functional Pitx1 binding site. Indeed, the dependence on an intact Pitx1 binding site in transgenic mice is so strict that responsiveness to GnRH is also lost, suggesting that the mutant promoter is inactive. Collectively, our data reinforce the concept that activity of the LHβ promoter is determined, in part, through highly cooperative interactions between SF-1, Egr-1, and Pitx1. While Egr-1 can be regarded as a key downstream effector of GnRH, and Pitx1 as a critical partner that activates SF-1, our data firmly establish that the Pitx1 element plays a vital role in permitting these functions to occur in vivo.


Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4349-4358 ◽  
Author(s):  
J. Charite ◽  
W. de Graaff ◽  
D. Consten ◽  
M.J. Reijnen ◽  
J. Korving ◽  
...  

Studies of pattern formation in the vertebrate central nervous system indicate that anteroposterior positional information is generated in the embryo by signalling gradients of an as yet unknown nature. We searched for transcription factors that transduce this information to the Hox genes. Based on the assumption that the activity levels of such factors might vary with position along the anteroposterior axis, we devised an in vivo assay to detect responsiveness of cis-acting sequences to such differentially active factors. We used this assay to analyze a Hoxb8 regulatory element, and detected the most pronounced response in a short stretch of DNA containing a cluster of potential CDX binding sites. We show that differentially expressed DNA binding proteins are present in gastrulating embryos that bind to these sites in vitro, that cdx gene products are among these, and that binding site mutations that abolish binding of these proteins completely destroy the ability of the regulatory element to drive regionally restricted expression in the embryo. Finally, we show that ectopic expression of cdx gene products anteriorizes expression of reporter transgenes driven by this regulatory element, as well as that of the endogenous Hoxb8 gene, in a manner that is consistent with them being essential transducers of positional information. These data suggest that, in contrast to Drosophila Caudal, vertebrate cdx gene products transduce positional information directly to the Hox genes, acting through CDX binding sites in their enhancers. This may represent the ancestral mode of action of caudal homologues, which are involved in anteroposterior patterning in organisms with widely divergent body plans and modes of development.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1829 ◽  
Author(s):  
Lepore ◽  
Maggisano ◽  
Bulotta ◽  
Mignogna ◽  
Arcidiacono ◽  
...  

Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Antoinette F. van Ouwerkerk ◽  
Fernanda M. Bosada ◽  
Karel van Duijvenboden ◽  
Matthew C. Hill ◽  
Lindsey E. Montefiori ◽  
...  

Abstract Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.


1995 ◽  
Vol 15 (12) ◽  
pp. 7091-7097 ◽  
Author(s):  
B Peers ◽  
S Sharma ◽  
T Johnson ◽  
M Kamps ◽  
M Montminy

A number of homeodomain proteins have been shown to regulate cellular development by stimulating the transcription of specific target genes. In contrast to their distinct activities in vivo, however, most homeodomain proteins bind indiscriminately to potential target sites in vitro, suggesting the involvement of cofactors which specify target site selection. One such cofactor, termed extradenticle, has been shown to influence segmental morphogenesis in Drosophila melanogaster by binding cooperatively with certain homeodomain proteins to target regulatory elements. Here we demonstrate that STF-1, an orphan homeodomain protein required for pancreatic development in mammals, binds cooperatively to DNA with Pbx, the mammalian homolog of extradenticle. Cooperative binding with Pbx requires a pentapeptide motif (FPWMK) which is well conserved among a large subset of homeodomain proteins. The FPMWK motif is not sufficient to confer Pbx cooperativity on other homeodomain proteins, however; the N-terminal arm of the STF-1 homeodomain is also essential. As cooperative binding with Pbx occurs on only a subset of potential STF-1 target sites, our results suggest that Pbx may specify target gene selection in the developing pancreas by forming heterodimeric complexes with STF-1.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 125-125
Author(s):  
Elena Levantini ◽  
Yutaka Okuno ◽  
Pu Zhang ◽  
Steffen Koschmieder ◽  
Hanna S. Radomska ◽  
...  

Abstract CD34 is the best-defined human hematopoietic stem cell (HSC) marker, however the regulation of its gene expression is still largely unknown. Therefore, unraveling the elements that regulate human CD34 expression would be an invaluable tool for a broad range of studies, including the establishment of models of leukemia in mice, which require targeting of the transgene to stem and/or early progenitor cells. Moreover, identification of such regulatory elements will provide important insights into the transcriptional agenda of stem and progenitor cells and most importantly will prove useful for gene therapy protocols. Studies from our laboratory demonstrated that human CD34 transgenes are expressed in murine repopulating HSCs, which resembles the expression of the CD34 gene in human hematopoiesis, thus indicating the mouse model as an excellent way to study the expression of human CD34. Using P1 derived artificial chromosome (PAC) clones encompassing the human CD34 gene to generate transgenic mice, we showed that 90kb of upstream and 26kb of downstream flanking sequences were capable of regulating human CD34 expression in murine transgenic lines. Successive deletions of this larger construct were then performed to identify the important control regions. Deletion of the 5′ region from −90kb to −18kb did not result in any loss of activity. PAC54A19, a clone extending from −18kb to +26kb, expressed RNA in various tissues in a manner similar to that of larger fragments. In contrast, deletions creating a construct spanning from −10kb to +17kb led to complete loss of expression in transgenic animals, indicating that critical distal elements are located between −18kb to −10kb and/or +17kb to +26kb. In order to facilitate identification of important regulatory elements present in the upstream (−18kb to −10 kb) and/or downstream (+17kb to +26kb) regions of human CD34, we created further deletions of PAC54A19 using rare-cutting restriction enzymes, and studied the effects of the deletions on human CD34 expression in transgenic mice. Interestingly, we did not detect any human CD34 mRNA and protein expression in bone marrow and HSCs from transgenic mice carrying a construct spanning from −18kb to +17.4kb. In contrast, we observed expression of human CD34 transcripts in the bone marrow of transgenic mice containing a PAC spanning from −12.8kb to +26kb. Furthermore, HSCs from this latter group of mice presented the human CD34 antigen on their surface, as detected by FACS. Taken together, these data are highly suggestive that critical cis regulatory element(s) required to drive human CD34 in vivo expression are located in a 8.6kb fragment placed between +17.4kb and +26kb downstream of the human CD34 gene. Our current efforts focus on identifying the element(s) within the 8.6kb 3′ region that might be required to achieve human CD34 expression in HSCs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4763-4763
Author(s):  
Donghoon Yoon ◽  
Hyojin Kim ◽  
Minyoung Jang ◽  
Jihyun Song ◽  
Gregory E Arnold ◽  
...  

Abstract Hypoxia regulates erythropoiesis and other essential processes via hypoxia-inducible transcription factors (HIFs). HIFs are heterodimers that consist of an α subunit (3 isotypes with significant homology; HIF-1α, HIF-2α, HIF-3α), and a common b-subunit; HIF-1 and HIF-2, in some instances exhibiting tissue- and gene-specific gene regulation. Erythropoietin (EPO) was the first identified HIF-1 target gene with the defined HIF-1 binding sequence. However, subsequent works suggested that HIF-2 also regulates EPO transcription and that there are other regulatory elements of EPO gene (i.e. Kidney Inducible Element KIE, Negative Regulatory Element NRE, and Negative Regulatory Liver specific Element NRLE). In silico analysis of the human EPO genome found two additional potential HIF-binding elements in the KIE and NRE regions. The comparative analysis of phylogenically conserved sequences of human, mouse, dog, and rat Epo genes further refined these mouse Epo gene HIF-binding elements as mKIE, mNRE1, mNRE2, and mNRLE2. We treated mice in hypoxia chamber (8% O2) and monitored changes of Epo mRNA levels in liver, kidney, brain, spleen, and bone marrow. All tested tissues increased Epo transcription during hypoxia. Bone marrow, spleen, kidney, and brain showed a peak of induction of Epo transcript at 3 hours of hypoxia treatment, while liver reached the highest level at 6 hours. Mice were sacrificed and organs were harvested, and in vivo chromatin immunoprecipitation (ChIPs) was performed with antibodies against HIF-1α and HIF- 2α and tissue-specific binding regions were defined. The results from these studies are summarized below. HIF-1 mKIE rnNRE mNRE2 mNRLE2 Norm Hyp Norm Hyp Norm Hyp Norm Hyp Liver − + − − + − ? ? Kidney − + − − + − + − Brain − + − − − + − + BM − + − − − − − + Splsen − + − − − − − + HIF-2 mKIE mNRE mNRE2 mNRLE2 Norm Hyp Norm Hyp Norm Hyp Norm Hyp “+” denotes presence and “-” absence of binding of HIF-1 and HIF-2, “?” – indicates inconclusive results. “Norm” - normoxia, “Hyp” - hypoxia. Liver − + − − − + − + Kidney + − − − + − ? ? Brain − − − − − − − + BM − − − − − − + − Spleen − + − − − − − + In conclusion, we demonstrate the differential hypoxia-induced binding of HIF-1 and HIF-2 at different HIF binding elements in the tissues known to express Epo. Further studies will be required to define the function of these HIF-1 and HIF-2 binding elements in tissue specific Epo expression and their role in health and disease.


2017 ◽  
Vol 114 (7) ◽  
pp. E1291-E1300 ◽  
Author(s):  
Sharon R. Grossman ◽  
Xiaolan Zhang ◽  
Li Wang ◽  
Jesse Engreitz ◽  
Alexandre Melnikov ◽  
...  

Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function—including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation.


Development ◽  
2021 ◽  
pp. dev.194977
Author(s):  
Chun-Wei Feng ◽  
Guillaume Burnet ◽  
Cassy M. Spiller ◽  
Fiona Ka Man Cheung ◽  
Kallayanee Chawengsaksophak ◽  
...  

In mice, the entry of germ cells into meiosis critically depends on the expression of stimulated by retinoic acid gene 8 (Stra8). Stra8 is expressed specifically in pre-meiotic germ cells of females and males, at fetal and postnatal stages respectively, but the mechanistic details of its spatiotemporal regulation are yet to be defined. In particular, there has been considerable debate regarding whether retinoic acid is required, in vivo, to initiate Stra8 expression in the mouse fetal ovary. We show that the distinctive anterior-to-posterior pattern of Stra8 initiation, characteristic of germ cells in the fetal ovary, is faithfully recapitulated when 2.9 kb of the Stra8 promoter is used to drive eGFP expression. Using in vitro transfection assays of cut-down and mutant constructs we identified two functional retinoic acid responsive elements (RAREs) within this 2.9 kb regulatory element. We also show that the transcription factor DMRT1 enhances Stra8 expression, but only in the presence of RA and the most proximal RARE. Finally, we used CRISPR/Cas9-mediated targeted mutation studies to demonstrate that both RAREs are required for optimal Stra8 expression levels, in vivo.


Sign in / Sign up

Export Citation Format

Share Document