scholarly journals Towards an integrative multi-omics workflow

2021 ◽  
Author(s):  
Florian Jeanneret ◽  
Stephane Gazut

The advent of high-throughput techniques has greatly enhanced biological discovery. Last years, analysis of multi-omics data has taken the front seat to improve physiological understanding. Handling functional enrichment results from various biological data raises practical questions. We propose an integrative workflow to better interpret biological process insights in a multi-omics approach applied to breast cancer data from The Cancer Genome Atlas (TCGA) related to Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC). Pathway enrichment by Over Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) has been conducted with both features information from differential expression analysis or selected features from multi-block sPLS-DA methods. Then, comprehensive comparisons of enrichment results have been carried out by looking at classical enrichment analysis, probabilities pooling by Stouffer's Z scores method and pathways clustering in biological themes. Our work shows that ORA enrichment with selected sPLS-DA features and pathways probabilities pooling by Stouffer's method lead to enrichment maps highly associated to physiological knowledge of IDC or ILC phenotypes, better than ORA and GSEA with differential expression driven features.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2010 ◽  
Author(s):  
Monther Alhamdoosh ◽  
Charity W. Law ◽  
Luyi Tian ◽  
Julie M. Sheridan ◽  
Milica Ng ◽  
...  

Gene set enrichment analysis is a popular approach for prioritising the biological processes perturbed in genomic datasets. The Bioconductor project hosts over 80 software packages capable of gene set analysis. Most of these packages search for enriched signatures amongst differentially regulated genes to reveal higher level biological themes that may be missed when focusing only on evidence from individual genes. With so many different methods on offer, choosing the best algorithm and visualization approach can be challenging. The EGSEA package solves this problem by combining results from up to 12 prominent gene set testing algorithms to obtain a consensus ranking of biologically relevant results.This workflow demonstrates how EGSEA can extend limma-based differential expression analyses for RNA-seq and microarray data using experiments that profile 3 distinct cell populations important for studying the origins of breast cancer. Following data normalization and set-up of an appropriate linear model for differential expression analysis, EGSEA builds gene signature specific indexes that link a wide range of mouse or human gene set collections obtained from MSigDB, GeneSetDB and KEGG to the gene expression data being investigated. EGSEA is then configured and the ensemble enrichment analysis run, returning an object that can be queried using several S4 methods for ranking gene sets and visualizing results via heatmaps, KEGG pathway views, GO graphs, scatter plots and bar plots. Finally, an HTML report that combines these displays can fast-track the sharing of results with collaborators, and thus expedite downstream biological validation. EGSEA is simple to use and can be easily integrated with existing gene expression analysis pipelines for both human and mouse data.


2020 ◽  
Author(s):  
Zhenhua Yin ◽  
Dejun Wu ◽  
Jianping Shi ◽  
Xiyi Wei ◽  
Nuyun Jin ◽  
...  

Abstract Background: Extensive research has revealed that genes play a pivotal role in tumor development and growth. However, the underlying involvement of gene expression in gastric carcinoma (GC) remains to be investigated further.Methods: In this study, we identified overlapping differentially expressed genes (DEGs) by comparing tumor tissue with adjacent normal tissue using the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database.Results: Our analysis identified 79 up-regulated and ten down-regulated genes. Functional enrichment analysis and prognosis analysis were conducted on the identified genes, and the fatty aldehyde dehydrogenase (FALDH) gene, ALDH3A2, was chosen for more detailed analysis. We performed Gene Set Enrichment Analysis (GSEA) and immunocorrelation analysis (infiltration, copy number alterations, and checkpoints) to elucidate the mechanisms of action of ALDH3A2 in depth. The immunohistochemical (IHC) result based on 140 paraffin-embedded human GC samples indicated that ALDH3A2 was over-expressed in low-grade GC cases and the OS of patients with low expression of ALDH3A2 was significantly shorter than those with high ALDH3A2 expression. In vitro results indicated that the expression of ALDH3A2 was negatively correlated with PDCD1, PDCD1LG2, and CTLA-4.Conclusion: We conclude that ALDH3A2 might be useful as a potential reference value for the relief and immunotherapy of GC, and also as an independent predictive marker for the prognosis of GC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingyuan Zhang ◽  
Xinkui Liu ◽  
Wei Zhou ◽  
Shan Lu ◽  
Chao Wu ◽  
...  

BackgroundHepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer.MethodsTwo groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes.ResultsWe identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate.ConclusionThe findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jin Zhou ◽  
Zheming Liu ◽  
Huibo Zhang ◽  
Tianyu Lei ◽  
Jiahui Liu ◽  
...  

Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t -AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
XinJie Yang ◽  
Sha Niu ◽  
JiaQiang Liu ◽  
Jincheng Fang ◽  
ZeYu Wu ◽  
...  

AbstractGlioblastoma (GBM) is a strikingly heterogeneous and lethal brain tumor with very poor prognosis. LncRNAs play critical roles in the tumorigenesis of GBM through regulation of various cancer-related genes and signaling pathways. Here, we focused on the essential role of EMT and identified 78 upregulated EMT-related genes in GBM through differential expression analysis and Gene set enrichment analysis (GSEA). A total of 301 EMT-related lncRNAs were confirmed in GBM through Spearman correlation analysis and a prognostic signature consisting of seven EMT-related lncRNAs (AC012615.1, H19, LINC00609, LINC00634, POM121L9P, SNHG11, and USP32P3) was established by univariate and multivariate Cox regression analyses. Significantly, Kaplan–Meier analysis and receiver-operating-characteristic (ROC) curve validated the accuracy and efficiency of the signature to be satisfactory. Quantitative real-time (qRT)-PCR assay demonstrated the expression alterations of the seven lncRNAs between normal glial and glioma cell lines. Functional enrichment analysis revealed multiple EMT and metastasis-related pathways were associated with the EMT-related lncRNA prognostic signature. In addition, we observed the degree of immune cell infiltration and immune responses were significantly increased in high-risk subgroup compared with low-risk subgroup. In conclusion, we established an effective and robust EMT-related lncRNA signature which was expected to predict the prognosis and immunotherapy response for GBM patients.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10817
Author(s):  
Huiting Xiao ◽  
Kun Wang ◽  
Dan Li ◽  
Ke Wang ◽  
Min Yu

Background Malignant ovarian cancer is associated with the highest mortality of all gynecological tumors. Designing therapeutic targets that are specific to OC tissue is important for optimizing OC therapies. This study aims to identify different expression patterns of genes related to FGFR1 and the usefulness of FGFR1 as diagnostic biomarker for OC. Methods We collected data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. In the TCGA cohort we analyzed clinical information according to patient characteristics, including age, stage, grade, longest dimension of the tumor and the presence of a residual tumor. GEO data served as a validation set. We obtained data on differentially expressed genes (DEGs) from the two microarray datasets. We then used gene set enrichment analysis (GSEA) to analyze the DEG data in order to identify enriched pathways related to FGFR1. Results Differential expression analysis revealed that FGFR1 was significantly downregulated in OC specimens. 303 patients were included in the TCGA cohort. The GEO dataset confirmed these findings using information on 75 Asian patients. The GSE105437 and GSE12470 database highlighted the significant diagnostic value of FGFR1 in identifying OC (AUC = 1, p = 0.0009 and AUC = 0.8256, p = 0.0015 respectively). Conclusions Our study examined existing TCGA and GEO datasets for novel factors associated with OC and identified FGFR1 as a potential diagnostic factor. Further investigation is warranted to characterize the role played by FGFR1 in OC.


2020 ◽  
Author(s):  
Zhenhua Yin ◽  
Dejun Wu ◽  
Jianping Shi ◽  
Xiyi Wei ◽  
Nuyun Jin ◽  
...  

Abstract Background: Extensive research has revealed that genes play a pivotal role in tumor development and growth. However, the underlying involvement of gene expression in gastric carcinoma (GC) remains to be investigated further. Methods: In this study, we identified overlapping differentially expressed genes (DEGs) by comparing tumor tissue with adjacent normal tissue using the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database. Results: Our analysis identified 79 up-regulated and ten down-regulated genes. Functional enrichment analysis and prognosis analysis were conducted on the identified genes, and the fatty aldehyde dehydrogenase (FALDH) gene, ALDH3A2, was chosen for more detailed analysis. We performed Gene Set Enrichment Analysis (GSEA) and immunocorrelation analysis (infiltration, copy number alterations, and checkpoints) to elucidate the mechanisms of action of ALDH3A2 in depth. The immunohistochemical (IHC) result based on 140 paraffin-embedded human GC samples indicated that ALDH3A2 was over-expressed in low-grade GC cases and the OS of patients with low expression of ALDH3A2 was significantly shorter than those with high ALDH3A2 expression. In vitro results indicated that the expression of ALDH3A2 was negatively correlated with PDCD1, PDCD1LG2, and CTLA-4. Conclusion: We conclude that ALDH3A2 might be useful as a potential reference value for the relief and immunotherapy of GC, and also as an independent predictive marker for the prognosis of GC.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1894
Author(s):  
Weronika Tomaszewska ◽  
Joanna Kozłowska-Masłoń ◽  
Dawid Baranowski ◽  
Anna Perkowska ◽  
Sandra Szałkowska ◽  
...  

MicroRNAs and their role in cancer have been extensively studied for the past decade. Here, we analyzed the biological role and diagnostic potential of miR-154-5p and miR-154-3p in head and neck squamous cell carcinoma (HNSCC). miRNA expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from cBioPortal, UALCAN, Santa Cruz University, and Gene Expression Omnibus (GEO). The expression data were correlated with clinicopathological parameters. The functional enrichment was assessed with Gene Set Enrichment Analysis (GSEA). The immunological profiles were assessed using the ESTIMATE tool and RNAseq data from TCGA. All statistical analyses were performed with GraphPad Prism and Statistica. The study showed that both miR-154-5p and miR-154-3p were downregulated in the HNSCC samples and their expression levels correlated with tumor localization, overall survival, cancer stage, tumor grade, and HPV p16 status. GSEA indicated that individuals with the increased levels of miR-154 had upregulated AKT-MTOR, CYCLIN D1, KRAS, EIF4E, RB, ATM, and EMT gene sets. Finally, the elevated miR-154 expression correlated with better immune response. This study showed that miR-154 is highly involved in HNSCC pathogenesis, invasion, and immune response. The implementation of miR-154 as a biomarker may improve the effectiveness of HNSCC treatment.


2021 ◽  
Author(s):  
Liang Chen ◽  
Liulin Xiong ◽  
Weinan Chen ◽  
Lizhe An ◽  
Huanrui Wang ◽  
...  

Abstract Background Bladder cancer (BLCA) is one of most common urinary tract malignant tumor and immunotherapy have generated a great deal of interest in BLCA. Immune checkpoint blockade (ICB) therapy has significantly progressed the treatment of BLCA. Multiple studies have suggested that specific genetic mutations may serve as immune biomarkers for ICB therapy. Objective In this study, we aimed to investigate the role of mutations genes and subtypes in prognosis and immune checkpoint prediction in BLCA. Method Mutation information and expression profiles were acquired from The Cancer Genome Atlas (TCGA) database. Integrated bioinformatics analysis was carried out to explore the mutation genes of BLCA. Functional enrichment analysis Gene Ontology (GO) and Gene set enrichment analysis (GSEA) was conducted. The infiltrating immune cells and the prediction of ICB between different subtypes group were explored using immuCellAI algorithm. Results The mutation genes Filaggrin (FLG) gene were identified. Following the study on its subtypes and functional enrichment analysis, Sub2 of FLG-wide type was found to have relationships with poor prognosis and immune infiltration BLCA. What’s more, Sub2 of FLG-wide type may be used as a biomarker to predict the prognosis of BLCA patients receiving ICB. Conclusion This research provides a new basis and ideas for guiding the clinical application of BLCA immunotherapy.


2020 ◽  
Author(s):  
Jian Lei ◽  
Zhen-Yu He ◽  
Jun Wang ◽  
Min Hu ◽  
Ping Zhou ◽  
...  

Abstract BackgroundTo investigate the potential molecular mechanism of ovarian cancer (OC) evolution and immunological correlation using the integrated bioinformatics analysis.MethodsData from the Gene Expression Omnibus (GEO) was used to gain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were completed by utilizing the Database for Annotation, Visualization, and Integrated Discovery (DAVID). After multiple validation via The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), the Human Protein Atlas (HPA) and Kaplan-Meier (KM) plotter, immune logical relationships of the key gene SOBP were evaluated based on Tumor Immune Estimation Resource (TIMER), and Gene Set Enrichment Analysis (GSEA) software. Finally, the lncRNAs-miRNAs-mRNAs sub-network was predicted by starBase, Targetscan, miRBD, and LncBase, individually. Correlation of expression and prognosis for mRNAs, miRNAs and lncRNAs were confirmed by TCGA, GEPIA 2, starBase, and KM.ResultsA total of 192 shared DEGs were discovered from the four data sets, including 125 upregulated and 67 downregulated genes. Functional enrichment analysis presented that they were mainly enriched in cartilage development, pathway in PI3K-Akt signaling pathway. Lower expression of SOBP was the independent prognostic factor for inferior prognosis in OC patients. Intriguingly, downregulated SOBP enhanced the infiltration levels of B cells, CD8+ T cells, Macrophage, Neutrophil and Dendritic cells. GSEA also disclosed low SOBP showed significantly association with the activation of various immune-related pathways. Finally, we firstly reported that MEG8-miR378d-SOBP axis was linked to development and prognosis of ovarian cancer through regulating cytokines pathway.Conclusions Our study establishes a novel MEG8-miR378d-SOBP axis in the development and prognosis of OC, and the triple sub-network probably affects the progression of ovarian tumor by regulating cytokines pathway.


Sign in / Sign up

Export Citation Format

Share Document